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1. Introduction

In a large number of electromagnetic problems, the spatial discretization is
dominated by very fine geometric details rather than the smallest wavelength of
interest. These fine details dictate a small time-step due to the Courant-Friedrichs-
Lewy stability bound {1}, when an explicit finite-difference time-domaim (FDTD)
scheme is used, which in turn leads to a large number of compuiational steps. The
use of the alternating direction implicit (ADI) method was introduced for the time-
domain analysis of electromagnetic problems to eliminate the Courant stability
bound of the explicit FDTD method [2,3]. The ADI method appears to be of
particular interest for large bio-electromagnetic problems and problems in which
the larger dispersion and phase error of the ADI method [4,5] is tolerable. In this
class of problems, it is often necessary to truncate the model and therefore extend
a dielectric material into the absorbing boundary conditions. Use of the D-H
formulation allows an easy implementation of unsplit field components PML
absorbing boundary conditions, independent of the materials modeled in the FDTD
space [6]. An unconditionally stable finite-difference time-domain (FDTD) method
based on a P-H formulation and the alternating-direction-implicit (ADI)
marching scheme was previously proposed [7]. Here we present an extension to
the previous PML implementation of the unconditionally stable method with
reduced reflection error,

2. D-H ADI FDTD Formulation

The modified Maxwell’s equations for the D-H FDTD formulation with PML
absorbing boundary conditions was given in [7] as
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The o/ (i} denote the PML conductivity profile in the x, y, and z directions. For

the sake of brevity, we show the derivation of the D-H ADI FDTD scheme for
the x-compenent only. The other components follow similarly. In the previous
formulation [7], the FDTD equations were derived as uniaxial PML layers in x, y,
and z, respectively, and then superimposed in the corners. Here, equation (1} is
discretized directly in one step. To this end, the modified Maxwell's Equation (1)
is transformed into the time domain as:
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As indicated by the ADI .scheme [2,3], the discretized equation for the first-half
time step for D, follows as
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The PML coefficients P are functions of the conductivity profiles o™ of the

ABC layers and given by:
P = B =140 ar) (263} =1+ X, 1)
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The equations for the magnetic field are derived dually. The second-half time step
for H, would be:
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The finite difference equation that is used to calculate the y -component of electric
field E from D for a given lossy dielectric material is given by
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where & is the relative permittivity and o 1s conductivity, To obtain the
tridhagonal system of equations implicitly reluating the D:'Ll’ along the y-uxis to the
fields D, E, und [ at time step n, equation (8) is substituted into (7) and then

into (3). The ADI algorithm is completed by deriving the equations for the sccond-
half time step and 1he other field components in a similar fashion {7].

3. Numerical Results and Conclusions

To validate the PML termination of the D-H4 ADI FDTD space, a single-cell
electric current source radiating in free space was used [1§. A compact pulsc
source was placed in the center of a uniform grid with dimensions of 95x95x95
cells und a uniform discretization Ax=Ay=Az=04mm. A 10-layer PML with
polynomiul grading of the PML conductivity-profile was used. The fields co-
polarized to the source were compared to the reference solution in a sufficiently
large grid (241x241x241). The observation peinis were placed two cells diagonally
from the corner of the PML and two cells from the face center of the PML. Fig. |
illustrates the respective relative reflection error using the proposed new
formulation and the previcus formulation for the case where the time siep was
twice that of the Courant stability bound. Fig. 2 is a similar plot for when the time
step was four times that of the Courant stability bound. The figure shows that the
reflection error frem the new PML formulation lies well below that of the previous
formulution. In both cases, the farge error observed with the previous PML
formulution appears to originate from the trihedral corer cells of the PML. us the
abserved error appears carlier at the corner observation cell and then propugates Lo
the face center. The new formulation does not exhabit such a large error originating
from the corners.

We present an improved amsotropic PML for the unconditionally stable - {f
ADI FDTD method. The relative reflection error observed from numerical
experiments is reduced by 15 10 20 dB as compared to the formulation in [7]. The
error i3 bound in late time, even for time step lengths that are larger than the
Courant stubility limit, which implies that the method is unconditionally stable for
late time.
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Fig. 1. Maximum reflection error. CFL#=2.
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Fig. 2. Maximum reflection error. CFL#=4.
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