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Focused Local Learning With
Wavelet Neural Networks
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Abstract—In this paper, a novel objective function is presented network. However, because the objective functions used in
that incorporates both local and global error as well as model guiding the network construction in ANNs and WNNSs is based
parsimony in the construction of wavelet neural networks. Two on global mean square error (MSE), the modeling quality of
methods are presented to assist in the minimization of this : T -
objective function, especially thelocal error term. First, during such key local features IS not emphasmed. More importantly,
network initialization, a locally adaptive grid is utilized to include @s addressed in Martell [2], existing wavelet-based model
candidate wavelet basis functions whose local support addressesselection methods (e.g., Saito [6]; Donoho and Johnstone
the local error of the local feature set. This set can be either [7]) focus on data de-noising and use an excessive number
user-defined or determined using information derived from the of wavelet coefficients/bases in their approximation models.

wavelet transform modulus maxima (WTMM) representation. S \ ) . - .
Second, during network construction, a new selection procedure This limits wavelet's applicability to potentially large size data

based on a subspace projection operator is presented to help€ncountered in many recent applications such as intelligent
focus the selection of wavelet basis functions to reduce thecal manufacturing, which encounter numerous sources of sensor

error. Simulation results demonstrate the effectiveness of these information and image data. This paper extends the ability of
methodologies in minimizing local and global error while main- — \y\Ns developed in the literature by improving their ability
taining model parsimony and incurring a minimal increase on ¢ del | | feat thereb AP | | d
computational complexity. o model local features, thereby minimizing local error, an

by reducing the number of wavelets used. Thus, our new
WNN can handle more complicated data patterns from large
sample signals. Ultimately, these improvements enable the
l. INTRODUCTION process engineer in assessing process performance and making

. . rocess-relevant decisions in a timely and cost-effective
EURAL networks are used in process modeling, da% y

o e : . . anner.
mining, a_rt|f|C|aI mtelllgen(_:e, machine 'ea""ﬂg _and many: g paper makes significant contributions to the following
other applications. As noted in [1] and [2], artificial neurzi

Index Terms—tocal error, objective function, wavelets.

works (ANNS) h imited ability to ch torize | hree problems: 1) identification of specific local features in po-
networks ( s) have limited ability to characterize loc entially large nonstationary datasets; 2) compression of entire

features, such as discontinuities in curvgture, Jumps m.va.lagtasets consisting of smooth and nonsmooth trends; and 3) im-
or other edges. These local features, which are located in tl%}

d/or f woicall bodv i tant i Bvement in the quality of modeling for important local fea-
andjor frequency, typically embody Important process-CritiCg) o g carrying key information. We present a methodology for
information such as aberrant process modes or faults [1]. Bot

Blving these problems with our new extended wavelet neural
[3] has noted that improved localized modeling can aid bo 9 P

. . " twork (EWNN) that combines three approaches.
data reduction (or compression) and subsequent CIaSS"f'c"’mo'lﬁtirst, a new objective function is presented that reflects local

]E:zlﬁretzat rely on an accurate representation of these IOtg?rloraszwell as standard global error and network size (or model

arsimony). By separating the losses from modeling local fea-
Zhang and Benveniste [4] and Baksgdti al. [5] improved parsi y). By separating 5568 nd

° . tyres and global data patterns in the objective function, our net-
upon this weakness of ANNs by developing wavelet neur\%j g P J

works (WNN hich ¢ ¢ foodf d 'ork can focus more on local features.
networks ( s), which are a type of feedforward neura Second, during network initialization, an adaptive number of

wavelet basis functions is presenteddousthe network mod-
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functions. By splitting the large size data into less-smooth atitkir associated scaling functions as the network activation
more-smooth components, parallel computing techniques danctions. However, the localized learning in Bakshi’s wave-net
be utilized to process these data segments simultaneouslystachievedmplicitly, by utilizing the localized wavelet basis
shorten the network construction duration. However, the topicfainctions to minimize a standardlobal error measure. In
network construction involving parallel computing techniquesontrast, this paper will demonstrageplicitlocalized learning
is left for future work. For an account of parallel computingising a newlocal error measure, to be discussed further in
techniques for implementing neural networks, see Sundararagetction Ill. Bakshi used wave-nets to predict chaotic time series
[8]. and to classify experimental data for process fault diagnosis. He
The rest of this paper is organized as follows. Section fbund that the training and adaptation efficiency of wave-nets is
provides a background to wavelet theory as it pertains &b least an order of magnitude better than classical ANNs. The
wavelet networks. Section Il formulates the problem angkason for this is that wavelet networks are a linear combination
discusses the new objective function, the adaptive initializatiafi localized basis functions that offer several advantages
and the subspace projection method. Section IV discusses iti@duding orthogonality, efficient numerical procedures and
use of the WTMM representation for prioritizing the locamultiresolution analysis capabilities over an RBF network.
features to be minimized. Section V provides simulation resulfgavelet networks have been applied to a wide variety of
demonstrating the effectiveness of the adaptive initializati@pplications including: nonlinear functional approximation and
and the focused selection schemes. These schemes can bemuseparametric estimation [4], system identification and control
either individually or jointly to minimize the local error, andtasks [13], and modeling and classification [9].
therefore the new objective function, in local regions of interest Wavelet networks can be viewed as an adaptive discretization
in the signal. Section V-D reports on results demonstrating tbéthe inverse wavelet transform. Following Mallat [14], the in-
automatic determination of the model order using the minimuwerse wavelet transform is discretized into the following:
of the new objective function. Alternatively, a new error space M
analysis (ESA) technique is proposed in Section V-E to help fM(w,t) — Zwii"‘/) <t _ “Z) (1)
visualize how the new initialization, selection and automatic = Ve Si

model orderdeterminatiop procedures tradgoff local and gIOkere the discrete version shown in (1) must be constructed
error against model parsimony. Next, Section V-F reports ¢n, - a family W of dilated and translated wavelets
a procedure that uses the WTMM representation to automate

construction of the local feature sét,. Finally, Section VI W — { 1 " <t = U/z) e Z} @
finishes with some concluding remarks. NED

so thatW represents an orthonormal basis bf(R). The
Il. BACKGROUND family consists of scaling and translating a mother wavelet,

bu,s (t)
WNNs have recently emerged as a powerful new type of ANN
[4], [5]- They resemble radial basis function (RBF) networks T i?/) <t - u)
because of the localized support of their wavelet basis functions Ve s

[9]. In contrast to classical sigmoidal-based ANNs, wavelet nefare,, ands are the translation and scale parameters, respec-
works provide efficient network construction techniques, faStﬁ{}er Thel/,/s term normalizedj<,, . (£)|| = 1. The family in
training times, and multiresolution analysis capabilities. @) is taken from a double indexedu}segular lattice

Wavelet neural networks (WNNs) were first proposed

by Zhang and Benveniste [10] as an alternative to classical {(smoun) = (@™, nBa™): m,n € Z}
feedforward ANNs for approximating nonlinear functions,

) . where the parametets and 3 denote the step sizes of the di-
WNNSs are feedforward neural networks with one hidden Iay%ltion and tl?anslation paraé]eters eq= 2 aﬂdﬁ — 1 form
comprised normally of radial (e.g., Mexican hat) wavelets PR

e . ) e standardlyadic lattice [14]. Using this lattice or grid, the
activation functions, and a linear output layer [11]. The outp fscretized version of the wavelet,, . (), becomes

layer of the WNN represents the weighted sum of the hidden
layer units, i.e., wavelet basis functions. Moreover, similar to Yo (t) = 27227t — )

other neural networks, Zhang and Benveniste [10] have utiIide

gradient-based techniques for updating the weights in t ‘l?q L(top) shows an example of such a lattice, where the trans-

WNN to further minimize the standard MSE of the network's> 0" parameter has been normalized to the intereal -1, 1]

approximation after network construction. For an account of
neural networks, see Haykin [12]. In addition, Bakshial.

[5] introduced an orthogonal wavelet networkave-net for
approximation and classification based on multiresolution Givenn Assume two random variablesindy satisfy the fol-
analysis. Bakshi's wave-net learns locally in a hierarchickiwing standard regression model

manner, i.e., it can model a hierarchy of resolutions that range — 3
from coarse or general data trends, to highly time-localized y=f)+e 3)
events such as discontinuities of curvature or edges. Bakshilsere f(t) € R is an unknown nonlinear functior; is
wave-net accomplishes this by using orthonormal wavelets ath@é standard zero mean independently identically distributed

7

I1l. PROBLEM FORMULATION
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Fig. 1. Examples of the three types of initialization grids. (Top) Standard grid. (Middle) Adaptive grid, with box-like distribution of wavelet centprising
the local initialization sefW ;.. (G = 5, p = 3). (Bottom) Adaptive grid, with trapezoidal distribution f ;. (G = 5,p = 3).

(i.i.d.) Gaussian noise error term, i.e., ~ N(0,0.%) and
T = {(t;,4:)}, denotes the set of training data.

Problem StatemenDetermine a parsimonious wavelet net-
work approximation, denoted by

M
FM(w,t) =3 wini(h)
j=1
using anM -size subsetM < L) of the wavelet basis functions

Pi(t) € W = {¢1(t),...,9r(t)} such thatf™ (w,t) mini-
mizes a cost function denoted by

* 1,(6,C) = [u; s — C/2,u; s + C/2] is theC-size interval
for the jth local featurg(u; € U = {u1,...,up}) cen-
tered atu; s with a priority level defined by the threshold
6

. ij(t) is the local fitting of the functiory(¢) for the local
interval 7;(6, C) and||f.]|? is the sum of squares of the
local window lengths (i.e/| fz||* = PC?);

* fc(t) is the global fitting of the functiory(¢) on the set
U°(8,C) = (0,00) — UI_, I;(6,C) and|| f¢|* is the sum
of squares of the supports of the global window lengths,
or

» .
F(M,\,6,0) = Z/ 7 —[f(t)|[f=’]1§(t)]2 dt o L
=17 " o I fell” = <ul - 5) + Z(U/z —u; 1 —O)?
[f(t) — fa(®)] M i=2
R RS

where



RYING et al: FOCUSED LOCAL LEARNING WITH WAVELET NEURAL NETWORKS 307

Model ParsimonyThe third term of (4)\M /N, is a mono- whereW, andW ;, denote the global and local sets of wavelet
tonically increasing data reduction measure defined as the rdigsis functions, respectivelW ¢ is constructed using the stan-
of the number of model termd/, to the overall data sizéy. darddyadic[14] lattice or pyramid of wavelet basis functions
The penalty parameteh, allows the user to tradeoff networkup to a given scalep = G.
size with local and global error modeling.

Selection of Window Size The parametef’; is the interval Wea = {tmn(t):m < G},
width or window size surrounding each local featurg,c U.

If the local model is a “point-match” function, the window sizeTo construct the local s8¥ , wavelet basis functions atfiner

is one data point. If the local model is larger than point-matckgsolutions tharfs are selected. In genera}; is chosen based
the window size should be larger than the support of the fine®i the degree to which the user wants to model global trends.
resolution wavelet but should not exceed the minimum of dimilarly, p defines the accuracy for modeling local features, but
the half-distances between the locations of two adjacent lo¢gaRlso limited by the sampling rate of the data. The following
featuresu; andwu;;1. The smaller the window siz€' is, the two schemes can be used to build the local ¥é;:

larger the region of data that is modeled by the global mgdel, = Box SchemeThis scheme distributes the centers (located at
In this case, the model will be simpler and use fewer coefficients = n2™) of the basis functions in the time-scale plane ac-
to approximate a given functiorf(t). In general, the window cording to an abrugbox-likedistribution, as defined in (5) and
sizeC; can be an arbitrary function of each local featureof illustrated in Fig. 1(middle)

the P critical local features. In this paper, we assume constant

window size:C; = C. Wi = {{mn(t):G<m<(G+p) and

Selection of Priority Thresholét The parametef determines |27"u; —n| < CVu; € U} (5)
the priority-classes of the local features and determines which
local features are included in the wavelet network model. Ingewhere; = 1,..., P. It should be noted that this scheme can
eral, this parameter is determined by the WTMM representatiathuse Gibbs-like oscillations in the network’s approximation
as described in Section IV. outside of a given local feature intervdl,. To help compen-

Explicit Localized Learninglt is important to note that tra- sate for these effects, the following alternative is proposed.
ditional network methodologies achieve localized learning  Trapezoidal Schem&his scheme distributes the centers of
plicity, not explicitly as presented in this paper. The reasontise basis functions using a more graduapezoidalprofile, as
that during the construction phase of traditional wavelet amffined by (6) and illustrated in Fig. 1(bottom)

RBF networks, the localized basis functions are chosen for their

ability to reduce aglobal error measure, such as the mearw; = {¢,, ,(t): G < m < (G+p) and

square error. Such a strategy achieves “localized learning” of 127" — n| < C(m)Vu; € U} (6)
signal trends only if the local features or regions dominate the ! - !

global error. In contrast, this paper proposgglicit“localized”

learning by allocating network resources (i.e., basis functions)

in those local regions that are included in the new explicil C(m) =C(1— (m— (G+p)))

error term of the objective function [see (4)].

The following sections will propose two novel approaches o thatC(G + 1) = Cp andC(G + p) = C.
minimize F'(M, X, §,C) [see (4)]. Section IlI-A will introduce ~ Now that the novel schemes for initializing the set of candi-
a novel network initialization scheme. Section I11-B will discusslate wavelet basis functions have been discussed, it is important
the standard selection methods. Next, Section 111-C will presetiat review network construction, or the selection of basis func-
a novel approach to selecting basis functions for the wavetins from the initialization sefyv*.
network. Section IlI-E will demonstrate how to automatically
determine the model order, or size, of the wavelet network usiRg Network Construction: Motivation and Background
the minimum of the objective function. Finally, Section IV will Once the initialization seW* of wavelet basis functions
discuss automatic generation of the local featureléeysing has been constructed, the next step is to select the “best”
the WTMM representation. M-size subsetM < L) of wavelet basis functions ifV* for

estimatingf(¢). However, in general, a search through all the
A. Network Initialization: Locally Adaptive Discretization  j/-size subsets is a computationally expensive combinatorial
Grid optimization problem, i.e., itis NP complete [9]. One nonlinear

To help minimize thdocal error term of this new objective optimization technique would be to uggnetic algorithms
function F(M, \, 6, C) [see (4)], the initialization set of can- (GAs), which have been utilized successfully by Echauz [9] for
didate wavelet basis function8V, is constructed to include radial wavelet networks and Chen [15], [16] for RBF networks.
those finer-resolution wavelets whose support influences théiile GAs can provide optimal or near-optimal network
local error within the interval widthC' of each local feature, topologies, they do so at the cost of extensive computational

u; € U = {uy,...,up}. Denote the initialization set of basisrequirements [16]. Consequently, this paper will consider
functions as the heuristic algorithms proposed by Zhang [4], who viewed

this subset selection task within the framework of statistical
W =WgUW; regression analysis



308 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 2, MARCH 2002

To select the most significant wavelegressordrom the li-  I'L f spanned by the union of th local featuresy; € U/ =

brary or sefW of candidate basis functions, Zhang [4] utilizedw,...,up}, i.€.,
three heuristic algorithms:
r
1) residual-based selection, which is similar to Mallat’s C C
, . » 1= Li=|uw-—=u+— 7
matching pursuit (MP) algorithm [14], ]L:Jl o {u’ TR )

2) stepwise selection by orthogonalization, which is similar

to the orthogonal matching pursuit (OMP) of Pati [17]gq thaZ can be written in discrete form as a diagonal matrix

and
3) backward elimination. r 1 oju;—i|<§ Vu, €U
. T = J =2 J
The stepwise procedure was also used by Chen [18] for non- i { 0 otherwise

linear modeling with RBF networks, and is summarized by Al-

gorithm 1 in Appendix I. and its corresponding orthogonal complemdift, = (I'*)+,
The basic idea of the first two algorithms is to select, at ea¢fan be defined as

stagez, the wavelet);(t) € W that spans the space “closest”

to the output function vectof,(t). Additionally, stepwise selec- r¢“=1-rt

tion works together with the wavelets selected from the previous o _ _ o

stages to maintain orthogonality, thereby gaining some coMiberel/ € RY¥*" is the identity matrix. Fig. 3 shows an ex-

putational efficiency [4]. The algorithm closely resembles th@mple of these two projection operators &or= {28 107} and

classical Gram—Schmidt orthogonalization procedure. The féf- = 10. Alternatively, a more gradual or tapered form for the

lowing is a brief review of the simpler residual-based selectidfc@! projection operatoF'“, which is trapezoidal in shape is

algorithm. given by the following:

Residual-Based Selectiofzhang [4]): Define the initial

3_ 1. _ 4 . 3C ._C .
residual vector ago(k) = f(tx),k = 1,..., N and the initial > ol —1) 2 Scf < U 2] Vu; €U
wavelet network approximation g (t) = 0. Also, letv; be L — i . . | _é| <3 Yy GP)C{
the orthogonalized version of the wavelgi(t). Then, Zhang’s 2 + & (uy —4) “jh‘" T Si<uj+5%5 Yy eU

otherwise

approach is to find the orthogonalized wavelgt W at stage
1,4 = 1,..., M, that minimizes the following standard global

e Excluding the trapezoidal projector above, one should note
error criterion:

here that T+)TT¢ = 0, andI'“ projectsf onto the subspace
spanned by/°(6, C) = (0, 00) — UI_, 1;(6, C) [see (4)].

N
1 These linear operators act to project the vegtonto its cor-
J(v;) = — i 1(t) — vy (te))? :
i) =7 ;(% 1(te) = v, (t) responding local and global subspaces
= (’Yi—l - ujvj)T(’Yi—l - ujvj) FLf — fL FGf — fG
with so thatf;, + f¢ = f, as shown in Fig. 3. Using these operators,
one can rewrite the standard global error minimization criteria
Uy = (UJTUj)i v yicr = v v s
ith the last equalit It of orth lity, i.e%v; = 1 o< -
Wi e last equality a result of orthonormality, i.e;,v; = 1. E — min N |+ N " s
Next, by substituting:; into .J(v;) we obtain i\ e ; i fr ; i

T T 2 whereM;, + Mg = M. One observes that at each stage, the
T(vs) = 21 i1 = (v i) chosen wavelet; serves to minimize either the local or global

error, or possibly both, depending on the support of the wavelet,

where we see that minimizing(v; ) at stage i is equivalent to v;. The degree to which the wavelet minimizes the error is de-

maximizing (v,; %y —1)?. pendent on its scale level, and therefore its local support. This

Using this result, one can define a linear subspace projectigrdiscussed further in the following theorem.

operator that will help select the “best” orthogonalized wavelet, Theorem 1 (Local Error Subspace Projection The-

v;, that spans the local error subspace and defines the local em@m): Given a set ofZ normalized wavelet basis functions

term,e;, = f — fr.(t) [see (4)]. Subspace projection operator8V € RN*L and a functiory € RY*!, then for a given disjoint

for local error minimization are addressed in the next sectionlocal feature set/ = {wi,...,up} defined over an interval
width C,3 a projection operatod” < RW-CT)=N for a

ite interval widthC' < N such that the wavele;, € W

osen at stage € [* = {1,...,L} will help minimize the

local error defined as

C. Network Construction: A Novel Technique Using Subspag%
Projectors c

Let us definel'” as thelocal linear projection operator that A
serves to project a given vectgr€ RV*! onto the subspace e, =If = fell=IIf =T /]l
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TABLE |
WAVELET BASIS FUNCTION SELECTION METHODS FORMODIFIED STEPWISESELECTION BY ORTHOGONALIZATION
Method Error Target Error Target Domain | Function Argument (()

I LOC&]MLSE Ule I]' ((5,C) FLf

II GlobalMSE (0, OO) If

II1 Globalysg + Localyise (0, OO) (I + FL)f

v Localysg for odd stages i Uk, L(8,0) TLf for odd stages i

Globalygsg for even stages i U<(6,C) T¢f for even stages i

TABLE I

COMPARISON OFSTANDARD AND ADAPTIVE INITIALIZATION GRIDS (A’f = 60)

Grid # Wavelons MSE MGSE | MLSE | # FLOPS | Start
Type Global | Local | (x 1073) | (x 1073) | (x 107%) | (x 107) #
Standard 48 12 2.95 2.65 6.17 8 511
Adaptive (Box) 44 16 1.66 1.80 0.10 2.1 98
Adaptive (Trap.) 37 23 2.69 2.92 0.26 2.4 118

for each of the local features; € U if the wavelet chosen at where the first term can be expressed as

stage i isy;,, where
T T 2
5 J(v) = (vil) i+ (W) v — v (i i)
l; = arg max (UjTC)

! due to orthogonality, i.e., sincey™ )Tv£, = 0. Next, we
and¢ = 'L £. The resulting wavelet network can be expresséd)ns'der th‘e two cases based on the local support of the wavelet
as v; at stage.

Caset v; € WE
ny M For this case, the local support of the waveletwill con-
S (w, 1) = Zwmi (t) = Aw tribute maximally to minimizing the local erroe;, = +*, so
=1 thatv; T (v% ) < v;T(v£ ;). Then, we have that
whereA = [y, ..., v, . . ,
Proof (Sketch): The main idea of the projection operator,  .J(v;) = (v/21) 721 + (v1) 1 — (vTvEy)
I'Y, is to help find and select the orthogonalized wavelgt
W that will help minimize the local error or residual, = v*.  and we see that minimizind(v;) is equivalent to maximizing

(Also, note thatee = +“.) This is equivalent to finding the (,,, 7L )2 However, this is equivalent to finding, such that
wavelety; which spans the space “closest’ftp, or whose sup-

port width influences the local error. The support of a wavelet
1p; varies inversely with scale = 27, i.e.,

. T\ 2
l; = arg iré(}x (v;7¢)

Support(v,, ) = [27"n, 27" (n + 1)] where¢ = v, = T'Lf.
Case Il: v; € W&
The error,er,, will be maximized the greatest for wavelets For this case, the local support of the waveletwill con-
whose support is less than the interval width by some finite prigibute maximally to minimizing the global errore = <, so
cision errore > 0 € R, i.e., thatv; T (v ,) < v;T(v%.,). Then, we have that

support(v;) — €' < ¢ J(v;) = (’ViLfl)T’ViLfl + (%‘Cil)T%cil - (UjT’YiCil)Q

. H I _ L e . . . ...
Define thelocal andglobalresidual vectors ag” = I'"f and  anq we see that minimizing(v;) is equivalent to maximizing

G _ 16 i i i .. . .
v~ = I'“f, respectively. Now, using this result and the faC(t,UjT,inil)Q_ However, this is equivalent to finding, such that

that the residual can be split up into its global and local error
components, i.ex;_; = v<; + v, (following the residual- o T2
based selection algorithm in Section I11-B) li = arg o (v°¢)

J(v;) = (%‘Cil + ’Yiril)T (%‘Cil + ’Yiril) —v;" (’Yicil + ’Yiril)2 where¢ =~ =T9f. u
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TABLE I
COMPARISON OF SELECTION METHODS |-V USING THE STANDARD
INITIALIZATION GRID (M = 60,C = 10,U = {28, 107})

Selection MSE MGSE | MLSE
Method (x 1073) | (x 1073 | (x 1073)
0 50 100 150 20 250 "0 50 100 150 20 250 () Local 268 | 290 | 409
(IT) Global 205 | 265 | 617
(IIT) Local + Global 3.17 3.21 2.68
(IV) Alt. Local + Global | 2.81 3.01 0.63

as well as the mean-of-local square error (MLSE) for odd stages
1, given by (10)

0 50 100 150 200 250 "0 50 100 150 200 250
1 cr

MLSE = —— . — i) Viel 10
CP;(f,L fin)®, Vie (10)

wherel is the union of the supports of the local feature gét,
[see (7)]. These error targets (i.e., MSE, MLSE, and MGSE) and
_ S : S their respective domains are indicated as subscripts in Table I.
0 5 100 150 200 250 o 5 100 150 20 20 The following discusses the selection methods in more detail.
Method |: This method determines the wavelet, at selection

Fig. 2. Comparison of the wavelet network approximations using (to?)tageL’ that is closest to the local subspace spanned by the pro-

. . I ; .
left) standard, (middle left) adaptive (box-profile) and (bottom left) adaptiv@cred_ version of the Slgnd_‘, [ [see Fig. 3(m|ddle_)]. The_pur-
(trapezoidal profile) initialization grid. Plots (top right), (middle right), andpose is to focus the selection of the wavelet basis functions, for

_(bottom right) sh_ow the corresponding pointwise error _for the approxima_ltiota| selection stagese {17 o ,M}, solely on the local feature
in (top left), (middle left), and (bottom left), respectively. (Network size: S .
M = 60, Interval width:C' = 10 and local feature séf = {28, 107}.) set (thereby minimizing the MLSE) and ignore the global part
of the signalI'“ f [Fig. 3(bottom)].
Method Il : This method is the standard selection algorithm,
and therefore chooses the wavelet at stagdich minimizes
the standard global error, i.e., MSE. This method does not, in
general, place any emphasis during the selection process on the
Using the proof sketch above, we propose the four basis fumainimization of the error (i.e., the MLSE) for the set of local
tion selection methods shown in Table |, wheiis the argument features,l/. Consequently, the local error (i.e., the MLSE) is
of (8) minimizedimplicity, i.e., if the local features tend to dominate
the global error (i.e., the MSE).
) Method 11l : This method compromises between local and
l; = argmax (v;7¢)". (8) global fitting by selecting the wavelet which has the largest
Jel inner product with the superposition of the two projected sig-
nals,(I + I'%)f. In other words, Method Ilweightsthe signal
more in the local regions of interest [see Fig. 3(middle)]. The
W™ that is closest in the inner-product sense to the subsp I is to choose wavelets which will impact the error in these
ocal regions (i.e., the MLSE) at a higher rate than the error

d by th t din (8). ) . ; .
spanne y_ _e grror arget,used in (8) _ in the global parts (i.e., the MGSE) of the signdl'® f [Fig.
However, it is important to note that selection methods ”'I\é(bottom)].

target different “global” errors. In terms of global error, Methods “\1athod IV : This method attempts to trade-off the minimiza-
Il and I target the minimization of the standard MSE definegq, of the local (i.e., the MLSE) and global error (i.e., MGSE)
over the whole domain of the functiofy i.e., (0,00). In con- o4 \SE) by alternating between the local projected sighalf

trast, for even selection staggésmethod IV targets the mini- [Fig. 3(middle)], and its complemer€ f [see Fig. 3(bottom)],
mization of the mean-of-global square error (MGSE)f the according to the following scheme:

Zt?m}?g gfin%egﬂ,ii (k))\)//e(rgt)he domai(é, ©) = (0,20) — + at odd selection stages select the wavelet;,; ¢ W~
J=EAT which is closest to theocal subspace, i.eL'X f [see Fig.
3(middle)], and
N_CP * at evenselection stages select the wavelet;, ¢ W*
Z (fic — fi,G)27 vi¢I (9) which is closest to thglobal subspace, i.eI' f [see
=1

D. Network Construction: Projection Schemes for Basis
Selection

Each selection method selects at each staf¢he selection
procedure (see Algorithm 1), the wavelet basis functipne

1

Fig. 3(bottom).



RYING et al: FOCUSED LOCAL LEARNING WITH WAVELET NEURAL NETWORKS 311

~05 1 i ! | I
0 50 100 150 200 250
2 | T T T T
o /_\{_\ ......................................................
o— ... ........
1 1 1 ] ! L
0 50 100 150 200 250
1 T T T T T
05k I_/-‘ ...............................................................................
o—1......
-05 i ! 1 ! 1
0 50 100 150 200 250
2 | T T T T
. R S
ok \_/ .................. \—I ......................................................
-1 1 ! I | |
0 50 100 150 200 250

05 ; ; ; ; ;
0 50 100 150 200 250

Fig. 3. Plots illustrating the subspace projection operators. Given a signaff(tdm (second from top) local projection operaldr projectsf onto its local
subspace (middld) ~f. The (second from bottom) global projection operdtét projectsf onto (bottom) its global subspaf¥*f. Note thatl' “f + I'¢f = f.

As a result, Method IV divides the allocation of networke. Network Size: Model Order Determination
resources, i.e., wavelet basis functions, equally between local
[Fig. 3(middle)] and “global” portions [Fig. 3(bottom)] of the The problem of determining the siz& of the wavelet
signal. Here, “global” refers to those portions of the signdletwork, i.e., the number of wavelet basis functions in the
not included in the local feature sdt]. As a result, during model, can be viewed as the standard model order determi-
even selection stages, this method targets the M@®Ethe nation problem [4]. Some of the standard approaches include
standard MSE. Akaike’s information-theoretic criteria (AIC), Akaike’s final

Thus, these methodimd andselecta wavelet basis function prediction error criterion (FPE), generalized cross-validation
at stagei from the setW*, but in no way help to provide a (GCV), statistical hypothesis test, and Schwartz and Rissanen’s
local orthonormal basis for each of the local feature intervalinimum description length (MDL) criterion [4]. Under
[u;—C/2,u;4+C/2],u; € U,suchasthe local cosine transforntertain assumptions [4], the GCV method gives an approximate
(LCT) or similar lapped orthogonal transforms (LOT) [14].  estimate of the MSEs [10], given by (11)

Now that a novel methodology has been proposed for se-
lecting the wavelet basis functions from the initialization set, | o]
W*, it is important to discuss how to determine the size or M) = — M) — )2+ 22 11
model order of the wavelet network. GOVM) N ;(f (i) = )"+ N’ )
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Fig. 4. Plot of (top) a signal with various edge types and (middle) its scale-space representation and (bottom) the modulus maxima extractediyom (mid
Black, gray, and white points correspond to positive, zero, and negative wavelet coefficients, respectively.

wheref is the wavelet network approximatioh] is the number zero, thenD is positive definite and the quadratic error term
of wavelets in the networky is the sample length gf(¢), and ¢ De is convex and has a local minima. Also, the model par-
v.2 isthe variance of the noisgn the regression model [see (3).simony term is a monotonically increasing function with model
The model size is determined to minimize the GCV criteriorsize, M. Finally, it is interesting to note that one can view (12)
Zhang [4] also gives an iterative description for incorporatings a weighted GCV function [see (11)], assuming that 202.
estimates of the noise variangg’ into the determination of the As a result, one can determine theparameter of (12) by it-
model order . eratively estimating the noise variance, as noted above and in
Similar to the GCV criterion, the novel objective function oZhang [4].
(4) can be realized in discrete form by combining the global andNow that the size of the network can be automatically de-
local error using a diagonal positive definite weighting matrixtermined, we discuss the automatic determination of the local
D € RM*N | as shown in (12) below feature set{/.

T M ) M IV. LOCAL SET PRIORITIZATION USING
F(M,2,6,0) = e De + )\N - Z drer” + )‘F (12) THE WTMM REPRESENTATION
k=1

To determine both the priority levéland the abscissa loca-
tion for each candidate local featusg € U/ [see (4)] algorith-

_ £ _ M ; ; ;
wherec = f — f* (w,?). The diagonal entries db are given mically, one must first detect and characterize each of the local

by features. To this end, Mallat [14], [19] showed that the wavelet
1 transform acts as a multiscale differential operator
Pa=y 1 W fs) = 5 (28 (w)
. u,s)==:s * Ug ) U
EE otherwise dun

wherew; is the jth local feature with window sizey. ||fz||> wherey = (—1)"6) and@ is typically chosen as a Gaussian.
is the sum of squares of the local window supports ffidl|> If one uses a wavelet with one vanishing moment, then the
is the sum of squares of the global window supports. The#éTMM are the maxima of the first-order derivative gf
diagonal weighting terms normalize the local and global erremoothed by,. Using a wavelet with two vanishing moments,
with respect to their window support widths, thereby providinthe WTMM correspond to high curvature. By definition,
a better indication of the global and local error minimizatiothe term modulus maximadescribes any pointug, s¢) in
during network construction. Since no diagonal elemf@éptis  scale-space such thg# f(u, sg)| is a strict local maximum
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in either the right or left neighborhood ef = v [14]. This such that each modulus maxira s) in the cone of influence
implies that satisfies (15).

OW f(v,50) _ W f(u, s)] < As*H1. (15)
du

A maxima lineis defined as any connected curs@:) in the Thu§, the local regularity can be characterlzgd by finding the
maximum slope oflog, |W f(u, s)| as a function oflog,(s)

scale-space plan@u, s) along which the points areodulus I ima ; ing the following:
maxima as shown in Fig. 4(c). As a result, the WTMM rep-a ong a maxima line converging tq using the following:

resentation of a signgl can be used for detection and charac-
terization of localized signal features, such as edges and local

singularities. Thus, computing the local regularity of a candidate edge lo-
calized near a point = v can be determined using linear re-
gression to estimai@. Once determined, the local feature et

Mallat and Hwang [14] showed that one is guaranteed to dgan be constructed by selecting the subset of candidate edges or
tect local singularities by following the WTMM at fine scales|qocal features., for which «; > 6. Using this local feature set,

Once detected, the Singularity at pOdni: v is characterized by one can effective'y Segment the Signal into its |C(d3‘.{‘f) and
the decay of thenodulus maximancluded inthe coneu—v| < global (I'“ f) components.

Cs of the scalogram. For example, Fig. 4(middle) shows the

scalogram or time-scale representation for a signal with vario@s Signal Segmentation

edge types, as shown in Fig. 4(top) [14]. One observes that eaclcf,he segmentation process can be summarized by the fol-
of the edges and singularities are detected by following the mqgﬁving steps:

ulus maxima lines to fine scales. Once an interesting feature has1 transformation of the signalinto the time-scale domain
been detected, it must be characterized. ) 9

using the nonorthogonal continuous wavelet transform

B. Singularity Characterization (CWT) as shown in Fig. 4(middle); _ .

2) extraction of theridges or modulus maximdrom this
time-scale plot as shown in Fig. 4(bottom);

3) “pruning” of the weakemaximaor ridgesfrom the initial

log, [W f(u, 5)| < logy A + (a + 1) log,(s). (16)

A. Singularity Detection

In order to determine whether a candidate local signal feature
(centered at a poirtt = v) is admissible to the feature séf,
It ”?“St ﬂrst be charactenzed. Ifa s_|gnﬁx!t) has a nondiffer- set, by excluding those maxima which do not traverse a
entiable singularity or edge at a pointn time, thelj the decay user-specified number of scale levels;
across _scales of t.he WT.MM can pe used to estimate the Iocal4) use of the dominamhaximato accurately determine the
re_gularlty qf th_e signal within a neighborhood @fMoreover_, localization in time or abscissa of important signal events,
this decay is directly related to the local properties of the signal i
and can be characterized using Lipschitz, or Hélder, exponent
[20], [14].

Definition: A function f is pointwise Lipschitzx > 0 atwv,
if there existsK' > 0, and a polynomiap,, of degreem = | «|
such that

3
S5) characterization of signal edges by estimating their local
Lipschitz exponentsy;;
6) construction of the local feature g6t = {u1,...,up}
using the priority threshold, such thaty; > 6.
Next, it is important to review some simulation studies
VteR, |f(t)—p.(t)] < K[t — vl (13) that demonstrate the effectiveness of the aforementioned
methodologies.
Lipschitz exponents provide uniform and local regularity mea-
sures of a signaf (¢) within a local neighborhood of a pointin V. SIMULATION RESULTS
time. If f is uniformly Lipschitza: > m in the neighborhood of
v, then one can verify thgtis necessarilyn times continuously
differentiable in this neighborhood [14]. The Lipshitz regularit
at v is the maximum slope dbg, |W f(u, s)| as a function of
log,(s) along a maxima line converging to To measure the
local regularity of a signal, the wavelet must have- « van-
ishing momentgsee (14)]

We now demonstrate the effectiveness of the two novel ap-
proaches to focus the learning of the wavelet network on critical
Yocal featuresu; € U of interest, thereby enabling the efficient
minimization of the novel objective function [see (4)]. First,
Section V-A compares the effectiveness of the adaptive initial-
ization grid (Section IlI-A) to the standard initialization grid
using the standard basis function selection scheme [see Table

+o0 [, Method II]. Second, Section V-B compares the effectiveness
/ t*p(t)dt =0 foro<k<n (14)  of the new subset selection schemes (see Section 111-B) to the

standard global selection scheme in their respective abilities to
to provide an accurate estimate of the local scaling exponentminimize the error in théocal regions of interest. Section V-C
[see (13)]. A wavelet witm vanishing moments is orthogonaldemonstrates the effectiveness of a combined strategy, involving
to polynomials of degree — 1. both focusedsubset selection and the use of the adaptive ini-

To detect and characterize a local signal edge more accuratélization grids, to reduce the error in local regions of interest.
at a pointy, Mallat [14] has shown thaf is uniformly Lipschitz Section V-D demonstrates automatic model order determination
« in the neighborhood of if and only if there existsd > 0 using the minimum of the new objective function. Alternatively,

ade o)
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Section V-E proposes a new ESA strategy to help visualize theted that the reduced computational burden for network initial-
minimization of both the global ankbcal error as a function ization, i.e., using the adaptive grids, should prove advantageous
of model parsimony. This ESA technique serves to supplemédat large-sample or multidimensional data sets. Moreover, basis
the visualization of error minimization using the new objectivlunctions can be initialized in regions where they will be most
function, which is cast in the form of a weighted quadratic aseded, i.e., as defined by the local feature&et,
described in Section llI-E. Finally, Section V-F shows results Now that the network initialization strategies have been
of the WTMM-based preprocessing procedure (see Section I\¢pmpared, the next section will compare the different selection
which is used to construct the local feature §ah a more au- schemes used for network construction, as described in Section
tomated fashion. -D

The following simulations were conducted in MATLAB
using Mallat’s 1-D signal [14], which is shown in Fig. 4(top).B. Network Construction: A Comparison of Basis Function
This signal was chosen because of the various edge types thelection Methods -1V

It ((ja.xr:;blts. T;hﬁ v;avell;at neglnvorks W(;re conTtrugted husmg 4 series of wavelet networks was constructed to compare and
radial form of the Sombrero dlexican-hatwavelet [9], whose contrast the different basis function selection methods, as de-

. . . _ 2
fE.ncU_onall f?”“ IS gi](lvehn by/(t) = (1 — ||t||2)(a( I1/2). For cribed in Section 1lI-D. This set of simulations compares the
this simulation work, the MLSE [see (10)] and MGSE [see (9 ffectiveness of the various projection operators in focusing the

are calculated to provide comparisons with the standard Mn%ietwork construction effort in the regions defined by the local

To S'”?p"fy matters, the SUbSCr'pts ("_e" MLSE, MGSE a, ature set{/. Each wavelet network was constructed to a size
MSE) introduced in Table | to differentiate and to help clari f M = 60 wavelet basis functions. All four networks utilized
the different selection methods will be assumed, and therefore . . .oo(ution level¢j — 9) of the standard dyadic initial-

dropped, for subsequent tables in this section. ization grid, and therefore started with= 98 basis functions
o ) (Section 11). The local feature set was choseWas {28, 107}

A. Network Initialization: A Comparison of Standard vs.  yjth an interval width ofC' = 10. The results of these simula-

Locally Adaptive Grids tions are shown in Table Ill. While the adaptive grids were not
A simulation study was conducted to compare the effectivesed in these simulations, the results of a combined simulation

ness of the adaptive and standard initialization grids in mirtudy, using both standard and adaptive grid techniques and the

mizing the local error, as defined by the local feature &et, subset selection strategies, is detailed in the next section [Sec-

First, awavelet network was constructed using a standard inititibn V-C].

ization grid (Fig. 1) using nine discrete scale or resolution levels. Table Il shows that the localized projector (Method 1) does

Next, a wavelet network was constructed using an adaptive inpt do a great job of minimizing the local error (MLSE). How-

tialization grid (Section Ill-A) with the following attributes:  ever, it does beat the standard global method (Method II). This is

« local feature sett/ = {28,107}; most likely due to an overemphasis on local error minimization,
« interval width:C' = 10; thereby causing overfitting. The combined local and global pro-
« resolution level§G = 5) for Wg: 0 < m < 5; jectors (Methods Il and IV) provide a good tradeoff between
« resolution levelgp = 3) for W;: 6 < m < 8. minimization of the local and global error, with the alternating

For comparison purposes, the total number of wavelet ba%é)jector (Method IV) performing the best of all four methods.

functions in each model was arbitrarily set/dt = 60. Both oreover, its local error performance (MLSE) is an order of

networks were constructed using the standard global Stepvﬁg@ﬁmt;&ds betterdthre]m thﬁ sr:anda;dr:nethod (Mzth(()jd ”)'E i';allé"
selection method for choosing wavelet basis functions (Meth ould be noted that all three of the nonstandard methods do

Il (¢ = I) in Table I). a better job of minimizing the local error (MLSE) than the stan-

Table Il shows the results of these three simulations, with tﬁ@lild mef[:lhcidt'h ratedies f work initializati q
approximation and error plots shown in Fig. 2. Both the box ang{l O;{V r? E strategies ocrj _nzwor dml ![? 'Z? lon an tr:mnih
trapezoidal adaptive grids outperformed the standard grid by ruction have been compared independently of one another, the

. . o ?ext section will investigate the strategies in combination.

1) reducing computational complexity (i.e., # of FLOPS) o

netvyork_ |n|t|al|zat|_on by a factor of3—4 due to the re- C. Combined Strategy: Adaptive Initialization Grid and
duction in the starting number of wavelet bases by afacter : :
ocalized Selection Methods

of five;
2) reducingocal error by a factor of 30 to 60, or more than A series of wavelet networks was constructed to investigate
an order of magnitude; the effect of using a combined approach, i.e., using both the

3) allocating more wavelet basis functions (or wavelongdaptive initialization grids and the four basis function selection
from the local seW, to facilitate local error minimiza- methods. The results are shown for the adaptive box-like and
tion. trapezoidal grids in Tables IV and V, respectively.

Table IV shows that local selection method | has the worst

However, the trapezoidal adaptive grid may overfit near tiglobal error performance (in terms of MSE and MGSE), but the

local regionsy,; € U7, as seen in Fig. 2(bottom left and right) best local error performance (in terms of MLSE), when using
Future studies are needed to optimize this trapezoidal profile tbe adaptive box-like grid (Fig. 1). This is to be expected, due
reduced overfitting near the local regions. Finally, it should ke the greater emphasis on the local error, and due to the greater
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TABLE IV TABLE VI
COMBINED STRATEGY: COMPARISON OF SELECTION METHODS COMBINED STRATEGY: COMPARISON OFSELECTION METHODS -1V U SING
I-IV USING AN ADAPTIVE BOX-LIKE INITIALIZATION GRID AN ADAPTIVE TRAPEZOIDAL INITIALIZATION GRID AND TRAPEZOIDAL

(M =60,C =10,U = {28, 107}) PROJECTIONOPERATOR FORSELECTION (M = 60,C = 10,U = {28, 107})
Selection # of Local Bases | MSE MGSE | MLSE Selection # of Local Bases | MSE MGSE | MLSE
Method (v, € W) (x1073%) | (x 107%) | (x 107%) Method (v, € Wp) (x1073) | (x 107%) | (x 107%)

(I) Local 25 8.02 8.77 0.39 (I) Local 36 12.1 13.2 2.22

(II) Global 16 1.66 1.80 1.03 (II) Global 23 2.69 2.92 2.64

(I1I) Local + Globat 20 3.30 3.58 2.84 (IT) Local + Global 22 3.10 3.32 7.95

(IV) Alt. Local + Global 22 2.96 3.23 0.58 (IV) Alt. Local + Global 28 2.86 311 2.54

D. Automated Model Order Determination

TABLE V To automatically determine the number of wavelet basis

COMBINED STRATEGY: COMPARISON OF SELECTION METHODS functions in the wavelet network, the new objective function
I-IV USING AN ADAPTIVE TRAPEZOIDAL INITIALIZATION GRID . .

(M = 60,C = 10,0 = {28, 107}) (Section I_II—E) was plotted as_a function of the number of

wavelets in the model. A series of four wavelet networks

Selection 4 of Local Bases | MSE | MGSE | MLSE Were initialized, using both standard and adaptive network
Method (n, € W) | (x107%) | (x 1073 | (x 10-4) initialization strategies, and constructed using the four network
(1) Local 6 19.9 21.0 1e3  construction strategies (Methods I-1V). Prior to this study, the
* ¥ ° . . . 2
(I1) Global 2 269 59 61 Variance of t_he noise was esﬂr_nated and the Eararﬂetetae
was determined to be approximat@ly x 10~°. In each case,
(IIT) Local + Global 24 2.72 2.86 12.6 . L . .
the minimum of the new objective function was used to specify
(IV) Alt. Local + Global 27 3.30 3.51 10.7

the model order, with results shown in Table VIl and Fig. 6.
Fig. 6 shows the corresponding plot of the new objective func-

number of wavelet basis functions that are utilized from the lociPn [S€€ (4)] as a function of the number of wavelets in the

set of wavelet basis functioW .. Conversely, global selection model, for the results in Table VII. The three new selection
method Il has the best global error performance (in MSE), afifthods (Methods |, 11, and 1V) each outperform the standard
is next to worst in terms of local error performance (in MLSE)gIObaI selection method (Method 1) in terms of:

This lower performance in terms of local error directly corre- 1) local error minimization, as defined by the local feature
lates with the reduced number of wavelets chosen from the local  set,U;

set,W . The alternating selection method IV provides the best 2) speed at which the minimum of the objective function is

tradeoff between local and global error performance. achieved,;
Table V shows that we obtain similar results when using the 3) model parsimony, using the minimum of the objective
adaptive trapezoidal grid, with methods | and Il efficiently min- function.

imizing their respective local and global error targets. How- To better visualize the performance of the automatic model
ever, selection methods Il and IV demonstrate a degradatiorgitler determination procedure, the authors propose the use of
local error performance (in MLSE) as compared to the adaptiuge following novel ESA technique.
box-like initialization grid, due in part to localized overfitting
and in part to interactions between the box-like projection op- . i
erator (Fig. 3) and the trapezoidal adaptive initialization gri%' ESA.: A '.\'eW. Technique for \ﬁsu-ahzmg Local and Global
. . . . o rror Minimization and Model Parsimony
To investigate this potential cause and mitigate the performance
degradation, the trapezoidal projector described in Section llI-BTg assist in the evaluation of different wavelet network
was used along with the adaptive trapezoidal initialization griggnstruction or initialization strategies, we propose a new
Simulation results are shown in Table V1. ESA technique. The basic idea behind ESA is to view the
Upon comparing Tables IV and V, we observe that the degnaavelet network error by plotting the local network error, i.e.,
dation in local error performance is reduced by using a mofi¢ — fL||2, as a function of the global network error, i.e.,
tapered trapezoidal projection operator. However, further wolllf’ — fG||2. During network construction, the network error
is needed to study its exact shape and performance with regasda function of model termsy/, corresponds to a curve in
to: 1) the number of local featured and 2) the proximity of this error space At the start of network construction, the error
local features:; andw, 1 in the local feature set. curve starts in the upper right corner and progresses down and
Now that the initialization and selection strategies have betnthe left as the model sizé{, increases. By observing the
discussed, it is important to study the automatic determinatigartical and horizontal components of the curve trajectory,
of the network sizej. one can ascertain the degree to which the local and global
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—x- Local Method |

10° — — Gilobal Method I
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N 107 10™ 10°

Global Error [log(MGSE)]

Fig. 5. ESA showing the MLSE as a function of the MGSE for the four basis function selection methods (I-1V) during automatic model order determination.

error are reduced with increasing model terms or wavelet basegmented according to the steps shown in Section IV-C. Once

function, M. In addition, the ESA technique can provide théhe modulus maxima were determined, as shown in Fig. 4(b),

user with valuable information regarding the efficiency of ¢he first six dominant maxima lines were chosen. (This number

given initialization or construction strategy, especially in termis problem dependent.) Subsequently, the local Lipschitz

of model parsimony and error minimization. exponenty;, for each maxima line was estimated using linear
For example, Fig. 5 shows an ESA plot for the wavelet netegression according to (16). The regression was performed

work approximations from the automatic model order determivithin the linear portion { = 2 to 4) of the amplitude of the

nation study (Section V-D, Fig. 6). One observes that all thregaxima linelog,(|W f(«, s)|) versuslog,(s). The results are

of the nonstandard selection methods (I, I1l, and IV) outperforshown in Table VIII.

the standard global selection method (I1) in terms of local error Next, the maxima were pruned based on a priority threshold

minimization by several orders of magnitude. In addition, thef 6 = . In other words, maxima whose local exponent was

global error (MSE and MGSE) is comparable to that attainegteater than the average of the top six positive exponents were

by the global selection method (l1). Finally, it should be notedhosen

that the ESA technique is also useful for assessing the efficiency

with which the desired error target is being addressed as each U ={ujs:a; > 0ande; > a = 0.43}.

wavelet term is added to the model.

Now it is important to discuss a methodology for automatising the remaining modulus maxima, the maxima were fol-
cally determining the local feature séf, lowed to small scaless = 2), and the abscissa locations were

then estimated to b& = {57, 104, 111, 190}. The window

Representation potential abscissa locations
The simulation work in the previous sections was conducted _ Wjy1 — uj
using a local feature set], that was specifiea priori by the C= Leun}.u}»_u <Tﬂ =4,

user, i.e., it assumed some prior knowledge on the number and

significance of edge types in the signal. For large or multidimen- Table X shows the results of using the combined strategy

sional signal databases, such a strategy may prove intractab{8ection V—C) to minimize the local error for this new feature
Therefore, to help determine the local feature €ét,in setand window size, along with the automatic model order gen-

more an automated fashion, the signal shown in Fig. 4(a) waation procedure (Section V-D). One observes that the three
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Fig. 6. Plot of the new objective functiafi( M, A, 6, C') as a function of the number of wavelet terms in the model. It is important to note that all three of the
new selection methods outperform the standard methodology in terms of model parsimony and combined local and global error. ThexgstiEngke the
minimum of the objective function and therefore the number of wavelets in the network.

TABLE VIl
AUTOMATIC MODEL ORDER DETERMINATION USING THE MINIMUM OF THE NEW OBJECTIVE FUNCTION (C' = 10,U = {28, 107})

Grid Selection Start | Model | MSE MGSE | MLSE

Type Method # | Order | (x107%) | (x 1073%) | (x 107%)
Adaptive (I) Local 98 66 4.50 4.92 0.0046
Standard (IT) Global 511 81 1.75 1.79 1.32
Adaptive (IIT) Local + Global 98 71 1.84 2.01 0.0092
Adaptive | (IV) Alt. Local + Global | 98 61 2.88 3.15 0.061

new nonstandard selection methods (I, Ill, and IV) improve the While this strategy succeeded to provide a local feature set,
local error for the automatically generated local featurelget, U, there are several problems which necessitate further work.
In addition, they afford comparable performance in terms of thérst, the calculation of the nonorthogonal CWT is computa-
global error, as measured by both the MSE and MGSE. tional intensive, especially for large or multidimensional sig-
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TABLE VI
ESTIMATES FOR THELOCAL LIPSCHITZ EXPONENTS ()
IN THE MALLAT SIGNAL
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employed (as reported in Section 1), including modeling and
classification as well as system identification and related con-
trol tasks.

APPENDIX |

The following algorithm forstepwise selection by orthogo-
nalizationcan be found in [4]. It provides the groundwork and
motivation for the modified selection algorithm developed in
Section IlI-B.

Algorithm 1: Step1l) Set

Maxima Line | Estimated Abscissa | Local Exponent
() Location (u;) (e;)
1 144 -0.09
2 190 0.43
3 57 0.60
4 13 0.09
5 104 0.44
6 111 0.57

nals. Second, the proximity of signal edges to one another gg]nd

complicate the extraction of their respective abscissa locations,
especially causing the extinction of important edge types. For
example, the step edge at abscissa location- 28 cannot
be successfully detected due to the termination of its modulus
maxima at small scales. This is most probably due to its prox-
imity to the edge at. = 14, whose cone of influence in scale
space can disrupt the propagation of maxima from the edge at
u = 28 to larger scales in scale space. As a result, further work
is needed to improve this edge detection strategy and the deter-
mination of the priority threshold.

and set

L=1{12...L}

. T £\2
l; = arg Ijrg?l( (vj f)

~ T
Ui, = Ulz- f
wy; = v,
Q11 = 1

pj(l)zvja j:]-a"'aLa j?élz

Stepi(t =2,...,M)

VI. CONCLUSION

This paper presented a novel objective function that incorpo-
rates both global antbcal error as well as model parsimony

L=I_1—{l 1}

in the construction of wavelet neural networks. During networnd for eacly € I;, compute

initialization, an adaptive dyadic discretization grid was utilized
to help reduce thimcal error within the vicinity of a finite set of
local regions, as defined by the local feature &etThis set of

local regions can be either user-defined or determined using reg-
ularity measurements derived from the WTMM representati?n d
to prioritize local features according to a priority thresh@ld, N
In addition, a modified stepwise selection procedure was pre-
sented to helgocusthe selection of wavelet basis functions
during network construction to redudacal error. Simulation
results demonstrated the effectiveness of these new method-

ologies in minimizing thelocal and global error with fewer and set

wavelet basis functions. In addition, these methodologies pro-
vide a net reduction in computational effort or complexity, es-
pecially when using the adaptive initialization grids. Moreover,
these computational savings motivate the direct transfer of these
methodologies to large-signal or multidimensional data sets, es-
pecially forfocusedearning within local hyper-regions of the
data space. However, further work is needed to optimize the
local and global projection operators, especially with regard
to localized Gibbs-like oscillations and overfitting [4]. This is
critical to modeling very large size datasets. Further work is
also needed to explore the use of parallel computing techniques

pi @ =97 = (0w, )

I=1— {j:pj(i) - 0}

i—1

2

(7 )" v)
l; = argmax ~————
jel; (pj(7)) pj(i)

[SIC

wi= () 7)ol

~ T
Uy, =Wy

G 1

T
Qpy = Vi, Wi, k:l,

Qg = <(Pli(i))TP§j)>_ .
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TABLE IX
AUTOMATIC MODEL ORDER DETERMINATION FOR AUTOMATICALLY GENERATED FEATURE SET (C' = 4,U = {57, 104, 111, 190})
Grid Selection Start | Model | MSE MGSE | MLSE
Type Method # | Order | (x 107%) | (x 107%) | (x 1079)
Adaptive (I) Local 91 83 1.65 1.79 1.85
Standard (II) Global 511 81 1.75 1.83 779
Adaptive (IIT) Local + Global 91 57 1.95 2.12 317
Adaptive | (IV) Alt. Local 4+ Global | 91 78 1.71 1.85 16.9
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