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Focused Local Learning With
Wavelet Neural Networks

Eric A. Rying, Student Member, IEEE, Griff L. Bilbro , Senior Member, IEEE, and Jye-Chyi Lu

Abstract—In this paper, a novel objective function is presented
that incorporates both local and global error as well as model
parsimony in the construction of wavelet neural networks. Two
methods are presented to assist in the minimization of this
objective function, especially thelocal error term. First, during
network initialization, a locally adaptive grid is utilized to include
candidate wavelet basis functions whose local support addresses
the local error of the local feature set. This set can be either
user-defined or determined using information derived from the
wavelet transform modulus maxima (WTMM) representation.
Second, during network construction, a new selection procedure
based on a subspace projection operator is presented to help
focus the selection of wavelet basis functions to reduce thelocal
error. Simulation results demonstrate the effectiveness of these
methodologies in minimizing local and global error while main-
taining model parsimony and incurring a minimal increase on
computational complexity.

Index Terms—Local error, objective function, wavelets.

I. INTRODUCTION

NEURAL networks are used in process modeling, data
mining, artificial intelligence, machine learning and many

other applications. As noted in [1] and [2], artificial neural
networks (ANNs) have limited ability to characterize local
features, such as discontinuities in curvature, jumps in value
or other edges. These local features, which are located in time
and/or frequency, typically embody important process-critical
information such as aberrant process modes or faults [1]. Bottou
[3] has noted that improved localized modeling can aid both
data reduction (or compression) and subsequent classification
tasks that rely on an accurate representation of these local
features.

Zhang and Benveniste [4] and Bakshiet al. [5] improved
upon this weakness of ANNs by developing wavelet neural
networks (WNNs), which are a type of feedforward neural
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network. However, because the objective functions used in
guiding the network construction in ANNs and WNNs is based
on global mean square error (MSE), the modeling quality of
such key local features is not emphasized. More importantly,
as addressed in Martell [2], existing wavelet-based model
selection methods (e.g., Saito [6]; Donoho and Johnstone
[7]) focus on data de-noising and use an excessive number
of wavelet coefficients/bases in their approximation models.
This limits wavelet’s applicability to potentially large size data
encountered in many recent applications such as intelligent
manufacturing, which encounter numerous sources of sensor
information and image data. This paper extends the ability of
WNNs developed in the literature by improving their ability
to model local features, thereby minimizing local error, and
by reducing the number of wavelets used. Thus, our new
WNN can handle more complicated data patterns from large
sample signals. Ultimately, these improvements enable the
process engineer in assessing process performance and making
process-relevant decisions in a timely and cost-effective
manner.

This paper makes significant contributions to the following
three problems: 1) identification of specific local features in po-
tentially large nonstationary datasets; 2) compression of entire
datasets consisting of smooth and nonsmooth trends; and 3) im-
provement in the quality of modeling for important local fea-
tures carrying key information. We present a methodology for
solving these problems with our new extended wavelet neural
network (EWNN) that combines three approaches.

First, a new objective function is presented that reflects local
error as well as standard global error and network size (or model
parsimony). By separating the losses from modeling local fea-
tures and global data patterns in the objective function, our net-
work can focus more on local features.

Second, during network initialization, an adaptive number of
wavelet basis functions is presented tofocusthe network mod-
eling effort and improve the quality of fit in local regions of
interest by increasing the number of finer-resolution wavelet
basis functions within the neighborhood of each elementof a
local feature set . This set can be defined prior to network con-
struction by the user, but we will propose an automated edge
detection methodology based on the wavelet transform mod-
ulus maxima (WTMM) technique, as described in Section IV.
This automated technique detects significant edges, segments
the signal and prioritizes the set of local features or edges based
on their local regularity.

Third, a local projection operator is defined tofocusthe selec-
tion of wavelet basis functions within any neighborhood during
network construction by including finer resolution wavelet basis
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functions. By splitting the large size data into less-smooth and
more-smooth components, parallel computing techniques can
be utilized to process these data segments simultaneously to
shorten the network construction duration. However, the topic of
network construction involving parallel computing techniques
is left for future work. For an account of parallel computing
techniques for implementing neural networks, see Sundararajan
[8].

The rest of this paper is organized as follows. Section II
provides a background to wavelet theory as it pertains to
wavelet networks. Section III formulates the problem and
discusses the new objective function, the adaptive initialization
and the subspace projection method. Section IV discusses the
use of the WTMM representation for prioritizing the local
features to be minimized. Section V provides simulation results
demonstrating the effectiveness of the adaptive initialization
and the focused selection schemes. These schemes can be used
either individually or jointly to minimize the local error, and
therefore the new objective function, in local regions of interest
in the signal. Section V-D reports on results demonstrating the
automatic determination of the model order using the minimum
of the new objective function. Alternatively, a new error space
analysis (ESA) technique is proposed in Section V-E to help
visualize how the new initialization, selection and automatic
model order determination procedures tradeoff local and global
error against model parsimony. Next, Section V-F reports on
a procedure that uses the WTMM representation to automate
construction of the local feature set,. Finally, Section VI
finishes with some concluding remarks.

II. BACKGROUND

WNNs have recently emerged as a powerful new type of ANN
[4], [5]. They resemble radial basis function (RBF) networks
because of the localized support of their wavelet basis functions
[9]. In contrast to classical sigmoidal-based ANNs, wavelet net-
works provide efficient network construction techniques, faster
training times, and multiresolution analysis capabilities.

Wavelet neural networks (WNNs) were first proposed
by Zhang and Benveniste [10] as an alternative to classical
feedforward ANNs for approximating nonlinear functions.
WNNs are feedforward neural networks with one hidden layer,
comprised normally of radial (e.g., Mexican hat) wavelets as
activation functions, and a linear output layer [11]. The output
layer of the WNN represents the weighted sum of the hidden
layer units, i.e., wavelet basis functions. Moreover, similar to
other neural networks, Zhang and Benveniste [10] have utilized
gradient-based techniques for updating the weights in the
WNN to further minimize the standard MSE of the network’s
approximation after network construction. For an account of
neural networks, see Haykin [12]. In addition, Bakshiet al.
[5] introduced an orthogonal wavelet network,wave-net, for
approximation and classification based on multiresolution
analysis. Bakshi’s wave-net learns locally in a hierarchical
manner, i.e., it can model a hierarchy of resolutions that range
from coarse or general data trends, to highly time-localized
events such as discontinuities of curvature or edges. Bakshi’s
wave-net accomplishes this by using orthonormal wavelets and

their associated scaling functions as the network activation
functions. However, the localized learning in Bakshi’s wave-net
is achievedimplicitly, by utilizing the localized wavelet basis
functions to minimize a standardglobal error measure. In
contrast, this paper will demonstrateexplicit localized learning
using a newlocal error measure, to be discussed further in
Section III. Bakshi used wave-nets to predict chaotic time series
and to classify experimental data for process fault diagnosis. He
found that the training and adaptation efficiency of wave-nets is
at least an order of magnitude better than classical ANNs. The
reason for this is that wavelet networks are a linear combination
of localized basis functions that offer several advantages
including orthogonality, efficient numerical procedures and
multiresolution analysis capabilities over an RBF network.
Wavelet networks have been applied to a wide variety of
applications including: nonlinear functional approximation and
nonparametric estimation [4], system identification and control
tasks [13], and modeling and classification [9].

Wavelet networks can be viewed as an adaptive discretization
of the inverse wavelet transform. Following Mallat [14], the in-
verse wavelet transform is discretized into the following:

(1)

where the discrete version shown in (1) must be constructed
from a family of dilated and translated wavelets

(2)

so that represents an orthonormal basis of . The
family consists of scaling and translating a mother wavelet,

where and are the translation and scale parameters, respec-
tively. The term normalizes . The family in
(2) is taken from a double indexed regular lattice

where the parameters and denote the step sizes of the di-
lation and translation parameters, e.g., and form
the standarddyadic lattice [14]. Using this lattice or grid, the
discretized version of the wavelet, , becomes

Fig. 1(top) shows an example of such a lattice, where the trans-
lation parameter has been normalized to the interval .

III. PROBLEM FORMULATION

Given: Assume two random variablesand satisfy the fol-
lowing standard regression model

(3)

where is an unknown nonlinear function, is
the standard zero mean independently identically distributed
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Fig. 1. Examples of the three types of initialization grids. (Top) Standard grid. (Middle) Adaptive grid, with box-like distribution of wavelet centers comprising
the local initialization set,W . (G = 5; � = 3). (Bottom) Adaptive grid, with trapezoidal distribution forW . (G = 5; � = 3).

(i.i.d.) Gaussian noise error term, i.e., and
denotes the set of training data.

Problem Statement: Determine a parsimonious wavelet net-
work approximation, denoted by

using an -size subset of the wavelet basis functions
such that mini-

mizes a cost function denoted by

(4)

where

• is the -size interval
for the th local feature cen-
tered at with a priority level defined by the threshold
;

• is the local fitting of the function for the local
interval and is the sum of squares of the
local window lengths (i.e., );

• is the global fitting of the function on the set
and is the sum

of squares of the supports of the global window lengths,
or
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Model Parsimony: The third term of (4), , is a mono-
tonically increasing data reduction measure defined as the ratio
of the number of model terms, , to the overall data size, .
The penalty parameter,, allows the user to tradeoff network
size with local and global error modeling.

Selection of Window Size C: The parameter is the interval
width or window size surrounding each local feature, .
If the local model is a “point-match” function, the window size
is one data point. If the local model is larger than point-match,
the window size should be larger than the support of the finest
resolution wavelet but should not exceed the minimum of all
the half-distances between the locations of two adjacent local
features, and . The smaller the window size is, the
larger the region of data that is modeled by the global model,.
In this case, the model will be simpler and use fewer coefficients
to approximate a given function, . In general, the window
size can be an arbitrary function of each local featureof
the critical local features. In this paper, we assume constant
window size: .

Selection of Priority Threshold: The parameterdetermines
the priority-classes of the local features and determines which
local features are included in the wavelet network model. In gen-
eral, this parameter is determined by the WTMM representation,
as described in Section IV.

Explicit Localized Learning: It is important to note that tra-
ditional network methodologies achieve localized learningim-
plicity, not explicitly as presented in this paper. The reason is
that during the construction phase of traditional wavelet and
RBF networks, the localized basis functions are chosen for their
ability to reduce aglobal error measure, such as the mean-
square error. Such a strategy achieves “localized learning” of
signal trends only if the local features or regions dominate the
global error. In contrast, this paper proposesexplicit“localized”
learning by allocating network resources (i.e., basis functions)
in those local regions that are included in the new explicitlocal
error termof the objective function [see (4)].

The following sections will propose two novel approaches to
minimize [see (4)]. Section III-A will introduce
a novel network initialization scheme. Section III-B will discuss
the standard selection methods. Next, Section III-C will present
a novel approach to selecting basis functions for the wavelet
network. Section III-E will demonstrate how to automatically
determine the model order, or size, of the wavelet network using
the minimum of the objective function. Finally, Section IV will
discuss automatic generation of the local feature set,, using
the WTMM representation.

A. Network Initialization: Locally Adaptive Discretization
Grid

To help minimize thelocal error term of this new objective
function [see (4)], the initialization set of can-
didate wavelet basis functions, , is constructed to include
those finer-resolution wavelets whose support influences the
local error within the interval width of each local feature,

. Denote the initialization set of basis
functions as

where and denote the global and local sets of wavelet
basis functions, respectively. is constructed using the stan-
darddyadic [14] lattice or pyramid of wavelet basis functions
up to a given scale, .

To construct the local set , wavelet basis functions atfiner
resolutions than are selected. In general, is chosen based
on the degree to which the user wants to model global trends.
Similarly, defines the accuracy for modeling local features, but
is also limited by the sampling rate of the data. The following
two schemes can be used to build the local set,:

Box Scheme: This scheme distributes the centers (located at
) of the basis functions in the time-scale plane ac-

cording to an abruptbox-likedistribution, as defined in (5) and
illustrated in Fig. 1(middle)

and

(5)

where . It should be noted that this scheme can
cause Gibbs-like oscillations in the network’s approximation
outside of a given local feature interval,. To help compen-
sate for these effects, the following alternative is proposed.

Trapezoidal Scheme: This scheme distributes the centers of
the basis functions using a more gradualtrapezoidalprofile, as
defined by (6) and illustrated in Fig. 1(bottom)

and

(6)

where

so that and .
Now that the novel schemes for initializing the set of candi-

date wavelet basis functions have been discussed, it is important
to review network construction, or the selection of basis func-
tions from the initialization set, .

B. Network Construction: Motivation and Background

Once the initialization set of wavelet basis functions
has been constructed, the next step is to select the “best”

-size subset of wavelet basis functions in for
estimating . However, in general, a search through all the

-size subsets is a computationally expensive combinatorial
optimization problem, i.e., it is NP complete [9]. One nonlinear
optimization technique would be to usegenetic algorithms
(GAs), which have been utilized successfully by Echauz [9] for
radial wavelet networks and Chen [15], [16] for RBF networks.
While GAs can provide optimal or near-optimal network
topologies, they do so at the cost of extensive computational
requirements [16]. Consequently, this paper will consider
the heuristic algorithms proposed by Zhang [4], who viewed
this subset selection task within the framework of statistical
regression analysis.
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To select the most significant waveletregressorsfrom the li-
brary or set of candidate basis functions, Zhang [4] utilized
three heuristic algorithms:

1) residual-based selection, which is similar to Mallat’s
matching pursuit (MP) algorithm [14],

2) stepwise selection by orthogonalization, which is similar
to the orthogonal matching pursuit (OMP) of Pati [17],
and

3) backward elimination.
The stepwise procedure was also used by Chen [18] for non-

linear modeling with RBF networks, and is summarized by Al-
gorithm 1 in Appendix I.

The basic idea of the first two algorithms is to select, at each
stage , the wavelet that spans the space “closest”
to the output function vector, . Additionally, stepwise selec-
tion works together with the wavelets selected from the previous
stages to maintain orthogonality, thereby gaining some com-
putational efficiency [4]. The algorithm closely resembles the
classical Gram–Schmidt orthogonalization procedure. The fol-
lowing is a brief review of the simpler residual-based selection
algorithm.

Residual-Based Selection(Zhang [4]): Define the initial
residual vector as and the initial
wavelet network approximation as . Also, let be
the orthogonalized version of the wavelet, . Then, Zhang’s
approach is to find the orthogonalized wavelet at stage

, that minimizes the following standard global
error criterion:

with

with the last equality a result of orthonormality, i.e., .
Next, by substituting into we obtain

where we see that minimizing at stage i is equivalent to
maximizing .

Using this result, one can define a linear subspace projection
operator that will help select the “best” orthogonalized wavelet,

, that spans the local error subspace and defines the local error
term, [see (4)]. Subspace projection operators
for local error minimization are addressed in the next section.

C. Network Construction: A Novel Technique Using Subspace
Projectors

Let us define as thelocal linear projection operator that
serves to project a given vector onto the subspace

spanned by the union of the local features,
, i.e.,

(7)

so that can be written in discrete form as a diagonal matrix

otherwise

and its corresponding orthogonal complement, ,
can be defined as

where is the identity matrix. Fig. 3 shows an ex-
ample of these two projection operators for and

. Alternatively, a more gradual or tapered form for the
local projection operator , which is trapezoidal in shape is
given by the following:

otherwise

Excluding the trapezoidal projector above, one should note
here that , and projects onto the subspace
spanned by [see (4)].

These linear operators act to project the vectoronto its cor-
responding local and global subspaces

so that , as shown in Fig. 3. Using these operators,
one can rewrite the standard global error minimization criteria
as

where . One observes that at each stage, the
chosen wavelet serves to minimize either the local or global
error, or possibly both, depending on the support of the wavelet,

. The degree to which the wavelet minimizes the error is de-
pendent on its scale level, and therefore its local support. This
is discussed further in the following theorem.

Theorem 1 (Local Error Subspace Projection The-
orem): Given a set of normalized wavelet basis functions

and a function , then for a given disjoint
local feature set defined over an interval
width a projection operator, for a
finite interval width such that the wavelet
chosen at stage will help minimize the
local error defined as
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TABLE I
WAVELET BASIS FUNCTION SELECTION METHODS FORMODIFIED STEPWISESELECTION BY ORTHOGONALIZATION

TABLE II
COMPARISON OFSTANDARD AND ADAPTIVE INITIALIZATION GRIDS (M = 60)

for each of the local features if the wavelet chosen at
stage i is , where

and . The resulting wavelet network can be expressed
as

where .
Proof (Sketch):The main idea of the projection operator,

, is to help find and select the orthogonalized wavelet,
that will help minimize the local error or residual, .

(Also, note that .) This is equivalent to finding the
wavelet which spans the space “closest” to, or whose sup-
port width influences the local error. The support of a wavelet

varies inversely with scale , i.e.,

support

The error, , will be maximized the greatest for wavelets
whose support is less than the interval width by some finite pre-
cision error , i.e.,

support

Define thelocal andglobal residual vectors as and
, respectively. Now, using this result and the fact

that the residual can be split up into its global and local error
components, i.e., (following the residual-
based selection algorithm in Section III-B)

where the first term can be expressed as

due to orthogonality, i.e., since . Next, we
consider the two cases based on the local support of the wavelet

at stage .
Case I:
For this case, the local support of the waveletwill con-

tribute maximally to minimizing the local error, , so
that . Then, we have that

and we see that minimizing is equivalent to maximizing
. However, this is equivalent to finding such that

where .
Case II:
For this case, the local support of the waveletwill con-

tribute maximally to minimizing the global error, , so
that . Then, we have that

and we see that minimizing is equivalent to maximizing
. However, this is equivalent to finding such that

where .
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Fig. 2. Comparison of the wavelet network approximations using (top
left) standard, (middle left) adaptive (box-profile) and (bottom left) adaptive
(trapezoidal profile) initialization grid. Plots (top right), (middle right), and
(bottom right) show the corresponding pointwise error for the approximations
in (top left), (middle left), and (bottom left), respectively. (Network size:
M = 60, Interval width:C = 10 and local feature setU = f28; 107g.)

D. Network Construction: Projection Schemes for Basis
Selection

Using the proof sketch above, we propose the four basis func-
tion selection methods shown in Table I, whereis the argument
of (8)

(8)

Each selection method selects at each stageof the selection
procedure (see Algorithm 1), the wavelet basis function

that is closest in the inner-product sense to the subspace
spanned by the error target,, used in (8).

However, it is important to note that selection methods II-IV
target different “global” errors. In terms of global error, Methods
II and III target the minimization of the standard MSE defined
over the whole domain of the function, i.e., . In con-
trast, for even selection stages, method IV targets the mini-
mization of the mean-of-global square error (MGSE),not the
standard MSE, defined over the domain

, and given by (9)

MGSE (9)

TABLE III
COMPARISON OFSELECTION METHODS I–IV USING THE STANDARD

INITIALIZATION GRID (M = 60;C = 10; U = f28; 107g)

as well as the mean-of-local square error (MLSE) for odd stages
, given by (10)

MLSE (10)

where is the union of the supports of the local feature set,
[see (7)]. These error targets (i.e., MSE, MLSE, and MGSE) and
their respective domains are indicated as subscripts in Table I.
The following discusses the selection methods in more detail.

Method I : This method determines the wavelet, at selection
stage , that is closest to the local subspace spanned by the pro-
jected version of the signal, [see Fig. 3(middle)]. The pur-
pose is to focus the selection of the wavelet basis functions, for
all selection stages , solely on the local feature
set (thereby minimizing the MLSE) and ignore the global part
of the signal, [Fig. 3(bottom)].

Method II : This method is the standard selection algorithm,
and therefore chooses the wavelet at stagewhich minimizes
the standard global error, i.e., MSE. This method does not, in
general, place any emphasis during the selection process on the
minimization of the error (i.e., the MLSE) for the set of local
features, . Consequently, the local error (i.e., the MLSE) is
minimizedimplicity, i.e., if the local features tend to dominate
the global error (i.e., the MSE).

Method III : This method compromises between local and
global fitting by selecting the wavelet which has the largest
inner product with the superposition of the two projected sig-
nals, . In other words, Method IIIweightsthe signal
more in the local regions of interest [see Fig. 3(middle)]. The
aim is to choose wavelets which will impact the error in these
local regions (i.e., the MLSE) at a higher rate than the error
in the global parts (i.e., the MGSE) of the signal, [Fig.
3(bottom)].

Method IV : This method attempts to trade-off the minimiza-
tion of the local (i.e., the MLSE) and global error (i.e., MGSE),
notMSE) by alternating between the local projected signal,
[Fig. 3(middle)], and its complement, [see Fig. 3(bottom)],
according to the following scheme:

• at odd selection stages, select the wavelet
which is closest to thelocal subspace, i.e., [see Fig.
3(middle)], and

• at evenselection stages, select the wavelet
which is closest to theglobal subspace, i.e., [see
Fig. 3(bottom).
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Fig. 3. Plots illustrating the subspace projection operators. Given a signal (top)f , the (second from top) local projection operator� projectsf onto its local
subspace (middle)� f . The (second from bottom) global projection operator� projectsf onto (bottom) its global subspace� f . Note that� f +� f = f .

As a result, Method IV divides the allocation of network
resources, i.e., wavelet basis functions, equally between local
[Fig. 3(middle)] and “global” portions [Fig. 3(bottom)] of the
signal. Here, “global” refers to those portions of the signal
not included in the local feature set,. As a result, during
even selection stages, this method targets the MGSE,not the
standard MSE.

Thus, these methodsfind andselecta wavelet basis function
at stage from the set , but in no way help to provide a
local orthonormal basis for each of the local feature intervals,

, such as the local cosine transform
(LCT) or similar lapped orthogonal transforms (LOT) [14].

Now that a novel methodology has been proposed for se-
lecting the wavelet basis functions from the initialization set,

, it is important to discuss how to determine the size or
model order of the wavelet network.

E. Network Size: Model Order Determination

The problem of determining the size of the wavelet
network, i.e., the number of wavelet basis functions in the
model, can be viewed as the standard model order determi-
nation problem [4]. Some of the standard approaches include
Akaike’s information-theoretic criteria (AIC), Akaike’s final
prediction error criterion (FPE), generalized cross-validation
(GCV), statistical hypothesis test, and Schwartz and Rissanen’s
minimum description length (MDL) criterion [4]. Under
certain assumptions [4], the GCV method gives an approximate
estimate of the MSEs [10], given by (11)

(11)
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Fig. 4. Plot of (top) a signal with various edge types and (middle) its scale-space representation and (bottom) the modulus maxima extracted from (middle).
Black, gray, and white points correspond to positive, zero, and negative wavelet coefficients, respectively.

where is the wavelet network approximation, is the number
of wavelets in the network, is the sample length of , and

is the variance of the noisein the regression model [see (3).
The model size is determined to minimize the GCV criterion.
Zhang [4] also gives an iterative description for incorporating
estimates of the noise variance into the determination of the
model order, .

Similar to the GCV criterion, the novel objective function of
(4) can be realized in discrete form by combining the global and
local error using a diagonal positive definite weighting matrix,

, as shown in (12) below

(12)

where . The diagonal entries of are given
by

otherwise

where is the th local feature with window size, .
is the sum of squares of the local window supports and
is the sum of squares of the global window supports. These
diagonal weighting terms normalize the local and global error
with respect to their window support widths, thereby providing
a better indication of the global and local error minimization
during network construction. Since no diagonal elementis

zero, then is positive definite and the quadratic error term
is convex and has a local minima. Also, the model par-

simony term is a monotonically increasing function with model
size, . Finally, it is interesting to note that one can view (12)
as a weighted GCV function [see (11)], assuming that .
As a result, one can determine theparameter of (12) by it-
eratively estimating the noise variance, as noted above and in
Zhang [4].

Now that the size of the network can be automatically de-
termined, we discuss the automatic determination of the local
feature set, .

IV. L OCAL SET PRIORITIZATION USING

THE WTMM REPRESENTATION

To determine both the priority leveland the abscissa loca-
tion for each candidate local feature [see (4)] algorith-
mically, one must first detect and characterize each of the local
features. To this end, Mallat [14], [19] showed that the wavelet
transform acts as a multiscale differential operator

where and is typically chosen as a Gaussian.
If one uses a wavelet with one vanishing moment, then the
WTMM are the maxima of the first-order derivative of
smoothed by . Using a wavelet with two vanishing moments,
the WTMM correspond to high curvature. By definition,
the term modulus maximadescribes any point in
scale-space such that is a strict local maximum
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in either the right or left neighborhood of [14]. This
implies that

A maxima lineis defined as any connected curve in the
scale-space plane along which the points aremodulus
maxima, as shown in Fig. 4(c). As a result, the WTMM rep-
resentation of a signal can be used for detection and charac-
terization of localized signal features, such as edges and local
singularities.

A. Singularity Detection

Mallat and Hwang [14] showed that one is guaranteed to de-
tect local singularities by following the WTMM at fine scales.
Once detected, the singularity at point is characterized by
the decay of themodulus maximaincluded in the cone

of the scalogram. For example, Fig. 4(middle) shows the
scalogram or time-scale representation for a signal with various
edge types, as shown in Fig. 4(top) [14]. One observes that each
of the edges and singularities are detected by following the mod-
ulus maxima lines to fine scales. Once an interesting feature has
been detected, it must be characterized.

B. Singularity Characterization

In order to determine whether a candidate local signal feature
(centered at a point ) is admissible to the feature set,,
it must first be characterized. If a signal has a nondiffer-
entiable singularity or edge at a pointin time, then the decay
across scales of the WTMM can be used to estimate the local
regularity of the signal within a neighborhood of. Moreover,
this decay is directly related to the local properties of the signal
and can be characterized using Lipschitz, or Hölder, exponents
[20], [14].

Definition: A function is pointwise Lipschitz at ,
if there exists , and a polynomial of degree
such that

(13)

Lipschitz exponents provide uniform and local regularity mea-
sures of a signal within a local neighborhood of a pointin
time. If is uniformly Lipschitz in the neighborhood of
, then one can verify that is necessarily times continuously

differentiable in this neighborhood [14]. The Lipshitz regularity
at is the maximum slope of as a function of

along a maxima line converging to. To measure the
local regularity of a signal, the wavelet must have van-
ishing moments[see (14)]

for (14)

to provide an accurate estimate of the local scaling exponent,
[see (13)]. A wavelet with vanishing moments is orthogonal
to polynomials of degree .

To detect and characterize a local signal edge more accurately
at a point , Mallat [14] has shown that is uniformly Lipschitz

in the neighborhood of if and only if there exists

such that each modulus maxima in the cone of influence
satisfies (15).

(15)

Thus, the local regularity can be characterized by finding the
maximum slope of as a function of
along a maxima line converging to, using the following:

(16)

Thus, computing the local regularity of a candidate edge lo-
calized near a point can be determined using linear re-
gression to estimate. Once determined, the local feature setU
can be constructed by selecting the subset of candidate edges or
local features for which . Using this local feature set,
one can effectively segment the signal into its local and
global components.

C. Signal Segmentation

The segmentation process can be summarized by the fol-
lowing steps:

1) transformation of the signal into the time-scale domain
using the nonorthogonal continuous wavelet transform
(CWT) as shown in Fig. 4(middle);

2) extraction of theridges or modulus maximafrom this
time-scale plot as shown in Fig. 4(bottom);

3) “pruning” of the weakermaximaor ridgesfrom the initial
set, by excluding those maxima which do not traverse a
user-specified number of scale levels;

4) use of the dominantmaximato accurately determine the
localization in time or abscissa of important signal events,

;
5) characterization of signal edges by estimating their local

Lipschitz exponents, ;
6) construction of the local feature set

using the priority threshold,, such that .
Next, it is important to review some simulation studies

that demonstrate the effectiveness of the aforementioned
methodologies.

V. SIMULATION RESULTS

We now demonstrate the effectiveness of the two novel ap-
proaches to focus the learning of the wavelet network on critical
local features of interest, thereby enabling the efficient
minimization of the novel objective function [see (4)]. First,
Section V-A compares the effectiveness of the adaptive initial-
ization grid (Section III-A) to the standard initialization grid
using the standard basis function selection scheme [see Table
I, Method II]. Second, Section V-B compares the effectiveness
of the new subset selection schemes (see Section III-B) to the
standard global selection scheme in their respective abilities to
minimize the error in thelocal regions of interest. Section V-C
demonstrates the effectiveness of a combined strategy, involving
both focusedsubset selection and the use of the adaptive ini-
tialization grids, to reduce the error in local regions of interest.
Section V-D demonstrates automatic model order determination
using the minimum of the new objective function. Alternatively,
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Section V-E proposes a new ESA strategy to help visualize the
minimization of both the global andlocal error as a function
of model parsimony. This ESA technique serves to supplement
the visualization of error minimization using the new objective
function, which is cast in the form of a weighted quadratic as
described in Section III-E. Finally, Section V-F shows results
of the WTMM-based preprocessing procedure (see Section IV),
which is used to construct the local feature setin a more au-
tomated fashion.

The following simulations were conducted in MATLAB
using Mallat’s 1-D signal [14], which is shown in Fig. 4(top).
This signal was chosen because of the various edge types that
it exhibits. The wavelet networks were constructed using a
radial form of the Sombrero orMexican-hatwavelet [9], whose
functional form is given by . For
this simulation work, the MLSE [see (10)] and MGSE [see (9)]
are calculated to provide comparisons with the standard MSE.
To simplify matters, the subscripts (i.e., MLSE, MGSE and
MSE) introduced in Table I to differentiate and to help clarify
the different selection methods will be assumed, and therefore
dropped, for subsequent tables in this section.

A. Network Initialization: A Comparison of Standard vs.
Locally Adaptive Grids

A simulation study was conducted to compare the effective-
ness of the adaptive and standard initialization grids in mini-
mizing the local error, as defined by the local feature set,.
First, a wavelet network was constructed using a standard initial-
ization grid (Fig. 1) using nine discrete scale or resolution levels.
Next, a wavelet network was constructed using an adaptive ini-
tialization grid (Section III-A) with the following attributes:

• local feature set: ;
• interval width: ;
• resolution levels for ;
• resolution levels for .

For comparison purposes, the total number of wavelet basis
functions in each model was arbitrarily set at . Both
networks were constructed using the standard global stepwise
selection method for choosing wavelet basis functions (Method
II in Table I).

Table II shows the results of these three simulations, with the
approximation and error plots shown in Fig. 2. Both the box and
trapezoidal adaptive grids outperformed the standard grid by:

1) reducing computational complexity (i.e., # of FLOPS) of
network initialization by a factor of – due to the re-
duction in the starting number of wavelet bases by a factor
of five;

2) reducinglocal error by a factor of 30 to 60, or more than
an order of magnitude;

3) allocating more wavelet basis functions (or wavelons)
from the local set to facilitate local error minimiza-
tion.

However, the trapezoidal adaptive grid may overfit near the
local regions, , as seen in Fig. 2(bottom left and right).
Future studies are needed to optimize this trapezoidal profile for
reduced overfitting near the local regions. Finally, it should be

noted that the reduced computational burden for network initial-
ization, i.e., using the adaptive grids, should prove advantageous
for large-sample or multidimensional data sets. Moreover, basis
functions can be initialized in regions where they will be most
needed, i.e., as defined by the local feature set,.

Now that the network initialization strategies have been
compared, the next section will compare the different selection
schemes used for network construction, as described in Section
III-D

B. Network Construction: A Comparison of Basis Function
Selection Methods I-IV

A series of wavelet networks was constructed to compare and
contrast the different basis function selection methods, as de-
scribed in Section III-D. This set of simulations compares the
effectiveness of the various projection operators in focusing the
network construction effort in the regions defined by the local
feature set, . Each wavelet network was constructed to a size
of wavelet basis functions. All four networks utilized
nine resolution levels of the standard dyadic initial-
ization grid, and therefore started with basis functions
(Section III). The local feature set was chosen as
with an interval width of . The results of these simula-
tions are shown in Table III. While the adaptive grids were not
used in these simulations, the results of a combined simulation
study, using both standard and adaptive grid techniques and the
subset selection strategies, is detailed in the next section [Sec-
tion V-C].

Table III shows that the localized projector (Method I) does
not do a great job of minimizing the local error (MLSE). How-
ever, it does beat the standard global method (Method II). This is
most likely due to an overemphasis on local error minimization,
thereby causing overfitting. The combined local and global pro-
jectors (Methods III and IV) provide a good tradeoff between
minimization of the local and global error, with the alternating
projector (Method IV) performing the best of all four methods.
Moreover, its local error performance (MLSE) is an order of
magnitude better than the standard method (Method II). Finally,
it should be noted that all three of the nonstandard methods do
a better job of minimizing the local error (MLSE) than the stan-
dard method.

Now that the strategies for network initialization and con-
struction have been compared independently of one another, the
next section will investigate the strategies in combination.

C. Combined Strategy: Adaptive Initialization Grid and
Localized Selection Methods

A series of wavelet networks was constructed to investigate
the effect of using a combined approach, i.e., using both the
adaptive initialization grids and the four basis function selection
methods. The results are shown for the adaptive box-like and
trapezoidal grids in Tables IV and V, respectively.

Table IV shows that local selection method I has the worst
global error performance (in terms of MSE and MGSE), but the
best local error performance (in terms of MLSE), when using
the adaptive box-like grid (Fig. 1). This is to be expected, due
to the greater emphasis on the local error, and due to the greater
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TABLE IV
COMBINED STRATEGY: COMPARISON OFSELECTION METHODS

I–IV USING AN ADAPTIVE BOX-LIKE INITIALIZATION GRID

(M = 60; C = 10; U = f28; 107g)

TABLE V
COMBINED STRATEGY: COMPARISON OFSELECTION METHODS

I–IV USING AN ADAPTIVE TRAPEZOIDAL INITIALIZATION GRID

(M = 60;C = 10; U = f28; 107g)

number of wavelet basis functions that are utilized from the local
set of wavelet basis function, . Conversely, global selection
method II has the best global error performance (in MSE), and
is next to worst in terms of local error performance (in MLSE).
This lower performance in terms of local error directly corre-
lates with the reduced number of wavelets chosen from the local
set, . The alternating selection method IV provides the best
tradeoff between local and global error performance.

Table V shows that we obtain similar results when using the
adaptive trapezoidal grid, with methods I and II efficiently min-
imizing their respective local and global error targets. How-
ever, selection methods III and IV demonstrate a degradation in
local error performance (in MLSE) as compared to the adaptive
box-like initialization grid, due in part to localized overfitting
and in part to interactions between the box-like projection op-
erator (Fig. 3) and the trapezoidal adaptive initialization grid.
To investigate this potential cause and mitigate the performance
degradation, the trapezoidal projector described in Section III-B
was used along with the adaptive trapezoidal initialization grid.
Simulation results are shown in Table VI.

Upon comparing Tables IV and V, we observe that the degra-
dation in local error performance is reduced by using a more
tapered trapezoidal projection operator. However, further work
is needed to study its exact shape and performance with regard
to: 1) the number of local features and 2) the proximity of
local features and in the local feature set .

Now that the initialization and selection strategies have been
discussed, it is important to study the automatic determination
of the network size, .

TABLE VI
COMBINED STRATEGY: COMPARISON OFSELECTION METHODSI–IV USING

AN ADAPTIVE TRAPEZOIDAL INITIALIZATION GRID AND TRAPEZOIDAL

PROJECTIONOPERATOR FORSELECTION (M = 60;C = 10; U = f28; 107g)

D. Automated Model Order Determination

To automatically determine the number of wavelet basis
functions in the wavelet network, the new objective function
(Section III-E) was plotted as a function of the number of
wavelets in the model. A series of four wavelet networks
were initialized, using both standard and adaptive network
initialization strategies, and constructed using the four network
construction strategies (Methods I-IV). Prior to this study, the
variance of the noise was estimated and the parameter
was determined to be approximately . In each case,
the minimum of the new objective function was used to specify
the model order, with results shown in Table VII and Fig. 6.

Fig. 6 shows the corresponding plot of the new objective func-
tion [see (4)] as a function of the number of wavelets in the
model, for the results in Table VII. The three new selection
methods (Methods I, III, and IV) each outperform the standard
global selection method (Method II) in terms of:

1) local error minimization, as defined by the local feature
set, ;

2) speed at which the minimum of the objective function is
achieved;

3) model parsimony, using the minimum of the objective
function.

To better visualize the performance of the automatic model
order determination procedure, the authors propose the use of
the following novel ESA technique.

E. ESA: A New Technique for Visualizing Local and Global
Error Minimization and Model Parsimony

To assist in the evaluation of different wavelet network
construction or initialization strategies, we propose a new
ESA technique. The basic idea behind ESA is to view the
wavelet network error by plotting the local network error, i.e.,

, as a function of the global network error, i.e.,
. During network construction, the network error

as a function of model terms, , corresponds to a curve in
this error space. At the start of network construction, the error
curve starts in the upper right corner and progresses down and
to the left as the model size, , increases. By observing the
vertical and horizontal components of the curve trajectory,
one can ascertain the degree to which the local and global
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Fig. 5. ESA showing the MLSE as a function of the MGSE for the four basis function selection methods (I–IV) during automatic model order determination.

error are reduced with increasing model terms or wavelet basis
function, . In addition, the ESA technique can provide the
user with valuable information regarding the efficiency of a
given initialization or construction strategy, especially in terms
of model parsimony and error minimization.

For example, Fig. 5 shows an ESA plot for the wavelet net-
work approximations from the automatic model order determi-
nation study (Section V-D, Fig. 6). One observes that all three
of the nonstandard selection methods (I, III, and IV) outperform
the standard global selection method (II) in terms of local error
minimization by several orders of magnitude. In addition, the
global error (MSE and MGSE) is comparable to that attained
by the global selection method (II). Finally, it should be noted
that the ESA technique is also useful for assessing the efficiency
with which the desired error target is being addressed as each
wavelet term is added to the model.

Now it is important to discuss a methodology for automati-
cally determining the local feature set,.

F. Automated Local Feature Set Generation Using the WTMM
Representation

The simulation work in the previous sections was conducted
using a local feature set,, that was specifieda priori by the
user, i.e., it assumed some prior knowledge on the number and
significance of edge types in the signal. For large or multidimen-
sional signal databases, such a strategy may prove intractable.

Therefore, to help determine the local feature set,, in
more an automated fashion, the signal shown in Fig. 4(a) was

segmented according to the steps shown in Section IV-C. Once
the modulus maxima were determined, as shown in Fig. 4(b),
the first six dominant maxima lines were chosen. (This number
is problem dependent.) Subsequently, the local Lipschitz
exponent, , for each maxima line was estimated using linear
regression according to (16). The regression was performed
within the linear portion ( to ) of the amplitude of the
maxima line versus . The results are
shown in Table VIII.

Next, the maxima were pruned based on a priority threshold
of . In other words, maxima whose local exponent was
greater than the average of the top six positive exponents were
chosen

and

Using the remaining modulus maxima, the maxima were fol-
lowed to small scales , and the abscissa locations were
then estimated to be . The window
size, , was set to be the minimum of all half-distances between
potential abscissa locations

Table IX shows the results of using the combined strategy
(Section V–C) to minimize the local error for this new feature
set and window size, along with the automatic model order gen-
eration procedure (Section V-D). One observes that the three
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Fig. 6. Plot of the new objective functionF (M;�; �; C) as a function of the number of wavelet terms in the model. It is important to note that all three of the
new selection methods outperform the standard methodology in terms of model parsimony and combined local and global error. The asterisks (‘�’) denote the
minimum of the objective function and therefore the number of wavelets in the network.

TABLE VII
AUTOMATIC MODEL ORDER DETERMINATION USING THE MINIMUM OF THE NEW OBJECTIVE FUNCTION (C = 10; U = f28; 107g)

new nonstandard selection methods (I, III, and IV) improve the
local error for the automatically generated local feature set,.
In addition, they afford comparable performance in terms of the
global error, as measured by both the MSE and MGSE.

While this strategy succeeded to provide a local feature set,
, there are several problems which necessitate further work.

First, the calculation of the nonorthogonal CWT is computa-
tional intensive, especially for large or multidimensional sig-
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TABLE VIII
ESTIMATES FOR THELOCAL LIPSCHITZ EXPONENTS (�)

IN THE MALLAT SIGNAL

nals. Second, the proximity of signal edges to one another can
complicate the extraction of their respective abscissa locations,
especially causing the extinction of important edge types. For
example, the step edge at abscissa location cannot
be successfully detected due to the termination of its modulus
maxima at small scales. This is most probably due to its prox-
imity to the edge at , whose cone of influence in scale
space can disrupt the propagation of maxima from the edge at

to larger scales in scale space. As a result, further work
is needed to improve this edge detection strategy and the deter-
mination of the priority threshold,.

VI. CONCLUSION

This paper presented a novel objective function that incorpo-
rates both global andlocal error as well as model parsimony
in the construction of wavelet neural networks. During network
initialization, an adaptive dyadic discretization grid was utilized
to help reduce thelocal error within the vicinity of a finite set of
local regions, as defined by the local feature set,. This set of
local regions can be either user-defined or determined using reg-
ularity measurements derived from the WTMM representation
to prioritize local features according to a priority threshold,.
In addition, a modified stepwise selection procedure was pre-
sented to helpfocus the selection of wavelet basis functions
during network construction to reducelocal error. Simulation
results demonstrated the effectiveness of these new method-
ologies in minimizing thelocal and global error with fewer
wavelet basis functions. In addition, these methodologies pro-
vide a net reduction in computational effort or complexity, es-
pecially when using the adaptive initialization grids. Moreover,
these computational savings motivate the direct transfer of these
methodologies to large-signal or multidimensional data sets, es-
pecially for focusedlearning within local hyper-regions of the
data space. However, further work is needed to optimize the
local and global projection operators, especially with regard
to localized Gibbs-like oscillations and overfitting [4]. This is
critical to modeling very large size datasets. Further work is
also needed to explore the use of parallel computing techniques
for constructing wavelet neural networks to model such large
datasets. Finally, the results and methodologies presented in
this paper are viewed by the authors to be directly applicable
to the other applications in which WNNs are currently being

employed (as reported in Section II), including modeling and
classification as well as system identification and related con-
trol tasks.

APPENDIX I

The following algorithm forstepwise selection by orthogo-
nalizationcan be found in [4]. It provides the groundwork and
motivation for the modified selection algorithm developed in
Section III-B.

Algorithm 1: Step1) Set

find

and set

Step i

and for each , compute

find

and set
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TABLE IX
AUTOMATIC MODEL ORDER DETERMINATION FOR AUTOMATICALLY GENERATEDFEATURE SET (C = 4; U = f57; 104; 111; 190g)
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Coding. Englewood Cliffs, NJ: Prentice-Hall, 1995.

Eric A. Rying (S’00) received both the B.S. and
M.S. degrees in electrical and computer engineering
from Carnegie Mellon University, Pittsburgh, PA
in 1995. He received the Ph.D. degree in electrical
engineering from North Carolina State University
(NCSU), Raleigh, in 2001.

In 1996, he was a Team Member and subsequently
the Team Leader in 1997 for the Semiconductor
Research Corporation Continuous Quality Improve-
ment (CQI) Programs at NCSU. He is currently an
Engineer for PDF Solutions, Inc, San Jose, CA. His

interests include yield modeling, wavelets, and their applications, wavelet
neural networks, advanced equipment, and process control, run-to-run control
and fault detection and classification in semiconductor manufacturing, espe-
cially for selective silicon epitaxy and rapid thermal chemical vapor deposition
(RTCVD) of ultrathin films. He holds one U.S. patent through NCSU.

Dr. Rying is a member of Eta Kappa Nu. In 1998, he received a U.S. Depart-
ment of Education Graduate Assistance in Areas of National Need (GAANN)
Fellowship through the NCSU National Science Foundation Engineering Re-
search Center for Advanced Electronic Materials Processing (AEMP).

Griff L. Bilbro (M’85–SM’94) received the B.S. de-
gree in physics from Case Western Reserve Univer-
sity, Cleveland, OH, and the Ph.D. degree in 1977
from the University of Illinois, Urbana-Champaign,
where he was a National Science Foundation Grad-
uate Fellow in Physics.

He designed computer models of complex systems
in industry until 1984, when he accepted a research
position at North Carolina State University (NCSU),
Raleigh. He is now a Professor of Electrical and
Computer Engineering. He has published in image

analysis, global optimization, neural networks, microwave circuits, and device
physics. His current interests include analog circuits and cathode physics.

Jye-Chyi Lu received the Ph.D. in statistics from
University of Wisconsin, Madison, in 1988

He joined the faculty of North Carolina State
University (NCSU), Raleigh, where he remained
until 1999 when he joined ISyE. He is a professor
in the School of Industrial and Systems Engineering
(ISyE). He is very active in promoting research,
education and extension-service programs with
focus on information systems engineering, e-busi-
ness, e-design, and industrial statistics areas. He has

published about 40 journal papers in these areas.
Dr. Lu serves as an Associate Editor of the IEEE TRANSACTIONS ON

RELIABILITY .


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


