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Comparison of a Genetic Algorithm with
a Simulated Annealing Algorithm for the

Design of an ATM Network
Dale R. Thompson, Member, IEEE,and Griff L. Bilbro, Senior Member, IEEE

Abstract—The genetic algorithm (GA) and simulated annealing
algorithm (SA) are empirically compared for the problem of opti-
mizing the topological design of a network. In addition to the usual
problem of optimizing only the placement of links, in this letter the
number and placement of concentrators are also decision variables
for a class of problems using a real set of concentrators, links, and
traffic. The average GA solution cost less than the average SA so-
lution.

Index Terms—Asynchronous transfer mode, genetic algorithm,
networks, simulated annealing, topology.

I. INTRODUCTION1

T HE topological design of a computer network specifies a
low-cost network topology that satisfies traffic quality of

service (QoS) constraints [1]. We characterize QoS as accept-
able buffer overflow probability [2]. A network is a set of ter-
minals and concentrators that exchange traffic over links. A ter-
minal is a source and destination of traffic. A concentrator is
any switch, hub, or router and is characterized by maximum
traffic capacity, number of ports, the traffic capacity of each
port, buffer size, and cost. A link is a connection between a ter-
minal and a concentrator or between concentrators and is char-
acterized by cost and maximum traffic capacity [3]. In a net-
work, terminals exchange traffic with other terminals, possibly
via concentrators. Traffic is a measure of the amount of infor-
mation exchanged per unit of time, i.e., cells per second, and is
characterized by effective bandwidth [2]. The route of the traffic
is the set of links the traffic uses to reach the destination. The
concentrators are connected to each other to form a backbone
network. Links between concentrators may be redundant [4].

The intractability and importance of topological design has
attracted heuristics [3], [4], including genetic algorithm (GA)
[5]–[7] and simulated annealing (SA) [1], [8] and new algo-
rithms are commonly compared with SA [1], [5]. Topological
design of a computer network is usually formulated as the place-
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ment of links between given concentrator locations [1], [5], be-
cause the monthly cost of leasing links between locations domi-
nates the cost of concentrators. Little attention has been given to
optimizing the number and placement of concentrators [3], [4],
[9]. We focus on comparing GA with the well-understood SA
for the concentrator location problem. The concentrator location
problem determines the number and location of concentrators,
how to connect them, and the terminals to connect to which con-
centrators [4]. This work was motivated by upgrading a campus
network to an asynchronous transfer mode (ATM) network that
had an existing fiber optic physical plant. Therefore, the con-
centrator costs dominate.

II. STATEMENT OF THE PROBLEM

We formulate the concentrator location problem using
Gavish’s terminology [3]. We refer to each unique origin-desti-
nation pair of traffic as a commodity and label it with index.
We define to be the index set of all commodities. Let be
the subset of routes that are candidates to support commodity
. Let be the index set of all candidate routes in the network,

. Let be the index set of feasible concentrator
locations. The set of terminal locations is a given constant.
We define as the index set of links used by routeand

as the index set of candidate links. A link is defined by its
end points and multiple links can exist between two locations.
In particular, a two-pair fiber cable between two locations
may connect both a terminal and a concentrator as well as a
concentrator to another concentrator.

Let for be the maximum capacity of link
in cells per second. Let be the maximum capacity of the
concentrator at site. Each commodity has a set of traffic
parameters which include peak rate, average rate, burst size,
and maximum acceptable loss probability. Any suchdefines
an effective bandwidth which we use to size link capacities.

We define three decision variables. Letbe equal to one if
a concentrator is assigned at location, and zero otherwise. Let

be equal to one if a link exists between locationsand , and
zero otherwise. Let be equal to one if route is selected to
support the appropriate commodity, and zero otherwise.

The traffic flow in cells per second on link is a
function of each commodities’ that traverse the link. Let

be the set of ’s of the appropriate commodity that is sup-
ported by route . Let be one if supports the appropriate
commodity and uses link , and zero otherwise. Therefore,
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is a function of the type of effective bandwidth algorithm
.

We define as the cost of locating a concentrator at location
and includes hardware, software, site preparation, and main-

tenance costs. The total concentrator costs are . We
define as the link cost of connecting locationsand and
includes installation and maintenance. The total link costs are

.
The objective function of the concentrator location problem

is to minimize the overall system costs

(1)

subject to contraints

(2)

(3)

(4)

(5)

(6)

(7)

(8)

or (9)

We make the following assumptions. We define the least ex-
pensive path as the least expensive set of link coststhat es-
tablishes a physical path between locationsand . We use the
least expensive path to assign terminals to concentrators, to as-
sign the links between concentrators, and to route commodities.
If we were solving a network in which link costs dominated, we
would adjust the routes to take capacity packing into considera-
tion. We restrict so the maximum of and de-
termines the required link capacity. For each given concentrator
location, we assign the largest capacity concentrator and apply
a greedy algorithm to find the least-cost concentrator that sup-
ports the traffic. Each concentrator may have multiple capacity
ports so we assign links to ports by sorting the effective band-
width of the links in ascending order and assigning them to the
ports in ascending order of capacity. Given these assumptions,
the problem is reduced to specifying the concentrator locations.

III. GENETIC ALGORITHM

The initial GA population of size was generated by using
the distinct least expensive solutions from a greedy-drop
heuristic. The greedy-drop heuristic places the largest capacity
concentrator at every candidate location. For each chosen
location, it iteratively assigns concentrators in decreasing order
of capacity until it finds the least-cost concentrator that will
support the traffic. Then, it calculates each concentrator’s cost
per supported traffic and drops the most expensive concentrator.
It repeats this process until the set of concentrators cannot
support the given traffic.

We used a relatively small population size to speed con-
vergence, a multipoint crossover operator to overcome the

homogeneity of the small population [10], and a neighborhood
search to refine the local minima [11]. Let max be the maximum
number of generations, be the average number of crossover
points, be the probability of crossover, and be the
probability of mutation. Note is defined as the probability
that a solution will be modified, not an individual variable.
Therefore, specifies that one or two variables in each
solution will be modified.

Algorithm 1: Genetic Algorithm
Initialize population with solutions
Evaluate fitness of each solution.
Save best solution.
Repeat max times

Select solutions for next generation
using tournament selection of size
[12].

After a specified number of genera-
tions, copy the best member times, and
delete exactly one distinct concentrator
location from each solution.

Pick two solutions with probability
and exchange genetic material with

-point segmented crossover operator.
Mutate solution with probability by

randomly adding, deleting, or exchanging
concentrator locations with probability
0.5, 0.25, and 0.25.

Evaluate fitness of each solution.
Replace worst solution of present gen-

eration with best solution found.

IV. SIMULATED ANNEALING ALGORITHM

The initial feasible solution for SA is constructed by using the
least expensive solution found with the greedy-drop heuristic.
Let be the temperature, be the initial temperature, max be
the maximum number of iterations, and be the maximum
number of modifications at a given. Let be the current so-
lution and be the new solution with costs and .
The functionrandom generates a random number between
zero and one with a uniform distribution.

Algorithm 2: Simulated Annealing Algorithm
Generate
Evaluate

Repeat max times
Repeat times

Create by randomly adding,
deleting, or exchanging concentrator
locations with probability 0.5, 0.25,
and 0.25.

Evaluate
if , then
else if random ,

then
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TABLE I
AVAILABLE SWITCHES

Fig. 1. Fiber topology

V. PERFORMANCEEVALUATION

Although we evaluate GA and SA on only one problem,
it provides a realistic comparison because it uses available
switches, fiber optic links, and traffic flows. The available
ATM switches are shown in Table I and the fiber optic topology
is shown in Fig. 1. The fiber physical topology supports 76
networks with 1423 different commodities. We set the cost
per fiber at $1.25/m. We set the maximum acceptable loss
probability to 10 and use effective bandwidth to determine
link capacities.

A single network evaluation requires approximately five min-
utes of computational time. Therefore, we restricted GA and
SA to evaluate 100 sets of concentrator sites and compared the
best solutions. We ran both algorithms ten times with distinct
random number generator seeds. In SA, , ,

, and . In GA, , ,
, , , , and the local search

was performed after the fourth generation.

VI. RESULTS AND CONCLUSIONS

GA and SA provided better solutions than the least-cost
greedy-drop heuristic solution of $587K. The average GA
solution ($463K) cost 5% less than the average SA solution

Fig. 2. Histogram of network topology costs.

($489K). A histogram of the costs with $20Kbins is shown in
Fig. 2. GA provides a tighter distribution of solutions than SA
with a standard deviation of almost one-half SA. We propose
that it is more probable that SA may discard potentially “good”
solutions than GA because SA retains a single solution and GA
retains a population of solutions.

Future upgrades of the network could be supported by GA.
We could do a break-even analysis by rearranging the existing
concentrators. For the initial population, we would copy the ex-
isting solution times and then randomly swap used and unused
locations maintaining the same number and types of concentra-
tors. If these simulations did not support the new requirements,
we would permit concentrator upgrades and additional concen-
trator locations.
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