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ABSTRACT: Deregulation eliminates the boundary of the
territory of the monopoly power industry. Competition forces
utilities to improve power quality as well as to reduce
investment and operation costs. Feeder imbalance describes a
situation in which the voltages of a three-phase voltage
source are not identical in magnitude, or the phase differences
between them are not 120 electrical degrees, or both. It
affects motors and other devices that depend upon a well-
balanced three-phase voltage source. Phase balancing is to
make the voltages balanced at each load point of the feeder.
Phase swapping is a direct approach for phase balancing with
the minimum cost. Phase balancing can enhance utilities’
competitive capability by improving reliability, quality, and
reducing costs. Therefore, phase balancing optimization is
nowadays receiving more attention in the power industry,
especially in today’s deregulating environments. The non-
linear effects, such as, voltage drops and energy losses, make
the problem difficult to solve. This paper introduces
Simulated Annealing as an effective method to solve a power
distribution phase balancing problem with its non-linear
effects. :
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Reconfiguration, Phase Swapping, Power Quality,
Deregulation, Simulated Annealing (SA), Candidate Set,

1. Introduction

In power distribution systems, single or two-phase
laterals and unbalanced loading are common phenomena.
Unbalanced feeders not only increase energy losses and the
risk of overload situations, but they also affect system power
quality and electricity price. Even a feeder system is designed
as a balanced feeder based on the given load data, load
prediction errors and unbalanced load growth will induce
feeder imbalance. The purpose of phase balancing is to find
the optimal phase swapping scheme to balance an unbalanced
feeder system with minimum cost. Reference [1,2] has
discussed the phase balancing problem in details.

Utilities pursue balanced operating conditions in their
distribution systems. A balanced system has smaller peak
load voltage drops and energy losses. Phase balancing
improves voltage balance, security, reliability, utilization
factors of existing facilities and defer feeder expansion
projects. As a result, a utility can provide power service with
higher quality and lower cost, which will enhance the utility’s
competitive edge in the deregulated environments,
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There are two approaches for phase balancing. One is
Jeeder reconfiguration at the system level; the other is phase
swapping at the feeder level, Feeder reconfiguration has been
extensively studied in the past several decades while phase
swapping has been ignored, Since feeder reconfiguration is
primarily designed for load balancing among the feeders,
most researchers do not consider phase balancing as an
objective in feeder reconfiguration. Only a few people
incorporated phase balancing into feeder reconfiguration
approaches based on the unbalanced feeder systems[3-6]. But
they realized that feeder reconfiguration has limitation to
reach phase balancing [3-6].

Since phase imbalance is usually not an emergency
condition as long as it does not cause device overloading,
extensive voltage drops, or trip ground relays, phase
swapping is normally carried out during maintenance and
restoration periods. Phase swapping is a direct and effective
way to balance a feeder in terms of phases. For the time
being, engineers already use phase swapping to balance phase
loading based on their experiences and trial and error
methods. The procedure is labor intensive, sub-optimal, and
time-consuming,

Phase swapping problem is an Optimal Power Flow
problem. For example, the cost function is to minimize the
energy losses, subject to load flow equations, voltage
requitement, capacity constraints, and the phase balancing
requitements. The control variables are the phase swapping
options at each candidate node [2]. Phase swapping is a large-
scale combinatorial optimization problem and is NP-complete
{(non-deterministic’ polynomial time complete). Thus its
computing effort increases exponentially with the size of
candidate set. We have formulated phase balancing problem
into Mixed-Integer Programming (MIP) [1,2], which is
suitable for the linear objective function. But in many cases,
the linear function may not well represent some decision-
making criteria, For example, minimizing energy fosses will
make the objective function as a non-linear integer function,
which is difficult to be solved analytically. While intelligent
computation methods, such as Fuzzy Logic, Genetic
Algorithm, and Simulated Annealing, are powerful to solve
noniinear integer programming problems. In this paper, we
will apply simulated annealing (SA), which is a heuristic
optimization method for large-scale NP-complete problems,
to solve the phase swapping problem.

SA can conguer the large-scale non-linear integer
programming problems [10]. Even it cannot guarantee the
optimality of the final solution, SA has the potential to aveid
local optimal solutions and converge to the global optimal
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solutions [10]. SA can provide an acceptable solution for a
NP-complete problem within a reasonable computing time.

We will first briefly describe simulated anuealing
algorithm. Then, a non-linear objective function and detailed
implementation of SA to solve phase balancing problem are
presented. Finally, the SA is compared with quenching
algorithm and greedy algorithm in terms of efficiency and
optimality. The necessary and sufficient conditions for
simulated annealing are also discussed. An example feeder is
used to illustrate the proposed algorithm to obtain a global
optimal solution.

2. Simulated Annealing Algorithm

SA is a simulation of annealing process of molten
metals. Let’s briefly describe matter physics, especially
annealing process first. The number of atoms in samples of

liquid or solid matter is of order 10% per cubic centimeter,
only the most probable behavior of the system in thermal
equilibrium at a given temperature is observed in
experiments. Therefore, statistical mechanics is the central
discipline of condensed matter physics. The average behavior

of the system is defined by the set of atomic positions {r;} ,

which is weighted by its Boltzmann probability factor,
exp(ﬁE({r‘. })/kBT), where E({r,}) is the system energy,

kH is Boltzmann constant, and T is temperature. In practice,

low temperature is not a sufficient condition for forming a
crystalline solid (with the lowest energy states). It is done by
careful annealing, first melting the substance, and spending a
long time at temperatures in the vicinity of the freezing point.
Otherwise the resulting crystal will have many defects, or the
substance may form a glass, with no crystalline order and
only metastable, locally optimal structure.

Metropolis et al. introduced a simple algorithm that can
be used to provide an efficient simulation of a collection of
atoms in equilibrium at a given temperature [7]. In each step
of the algorithm, an atom is given a small random
displacement and resulting energy change, AE. If AE <0,
the displacement is accepted, and the configuration with the
displaced atom is used as the starting point of the next step.
The case AE > 0 is treated probabilistically: the probability

that the configuration is accepted is exp(— AE/ kBT). By

repeating the basic step many times, one simulates the
thermal motion of atoms in thermal contact with a heat bath
at temperature T.

Kirkpatrick et al. extended Metropaolis algorithm to
Simulated Annealing {(8A) for approximate numerical
simulation of the behavior of system at a finite temperatute.
SA provides a natural tool for bringing the techniques of
statistical mechanics to bear on optimization [8]. It is a
heuristic random search process to solve the combinatorial
problems and non-linear / npn-derivative problems, such as,
integrated circuit design, traveling salesmen problem, etc. SA
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can find slightly better solution than most other heuristic
methods, such as sequential algorithm [9].

SA allows perturbations to move deteriorated solution
in a controlled fashion. It is essentially a simulation of
amnealing process of molten metals, The iteration number
used in the SA is analogous to temperature level in the
annealing process. A candidate solution is generated for each
iteration. If this solution is a better one, then it is accepted
and is used to generate the next candidate solution. If the
solution is a deteriorated one, it is accepted when its
probability of acceptance (Boltzmann distribution) is greater
than a random number between 0 and 1. In the next iteration,
temperature is reduced according to some function of system
states, The deteriorated solution is accepted with less and
less probability through iterations. The solution process
continues until the maximum number of iteration is reached
or the optimal solution is found. Because the deteriorated
solution is acceptable, it is possible to jump out of local
minima and potentially find the global minima. Since the
deteriorated solution is accepted carefully, it can be proved
that SA converges asymptotically [10].

What are the necessary and sufficient conditions for
simulated annealing convergence? Simulated annealing can
be modeled probabilistically as Markov chains. SA are (1)

The Markov chain associated with G(ck), generation

probability matrix at kth iteration, is irteducible, in another
words, there is a positive probability of reaching state / from
any state / in a finite number of transitions. (2) For any states
Jjand i, iis reachable from j if and only if j is reachable from

i . The optimal state ( X (k) € R, ) must be reached from
initial state when iteration k is large enough, that is,

tim Pr{X(k) € %,,, ) =1 [10].

k=

Cne step transition matrix:
Gyler)- 4/(c)

Pk -1k)=

e 1- §_G:‘!(Ck)"4ﬂ(ck) J=1i
I=1J#i

where: Ay (c,{) = min{l, exp((C(z‘) - C(j)) / ¢ )} )

acceptance probability

Vj#i
(D

Gy(ck) > (}, generation probability of generating j from {
C(i) , cost function (objective) for state J.

C,. the temperature at kth iteration.lim, ,, ¢, =0 and
C Z Cpp1

3. Objective Function and Constraints

To investigate the effects of voltage drops and/or losses,
a full AC load flow model have to be considered in the phase
swapping formulation, SA has advantages to solve problems
with non-linear, non-derivative, discrete objective functions
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and constraints. For phase swapping problems, the cost
function of each candidate solution is easily evaluated after
updating load flows (call AC load flow program or DC load
flow program). For a radial feeder system, the voltages and
its angles can be obtained by forward sweep and the losses
can be obtained by backward sweep [11].

L Start with the original feeder |

—]
¥
Random select the candidate node
and phase swapping option

+

| AC/DC load flow catculation |

*

[ Evaluate the objective function |

Discard the current candidate I

Figure 1. Flow Chart of Application of SA to the phase
balancing problems

Load flow calculation is separated frem the
optimization process, That is, once a phase swapping
candidate is generated, run AC load flow to update the load
flows first, then check the validation constraints and evaluate
the objective function based on the updated load flows, SA
will decide whether the candidate is accepted or discarded.
The process continues until the final temperature is reached.

SA gives us a freedom to define the objective function
and constraints. Therefore the phase swapping formulation
can be closer to decision-maker’s expectation. For example,
phase swapping cost is proportional to the number of phase
swapping. But the benefits of phase swapping need to cover
energy loss reduction, improve reliability and service quality,
etc. The benefit function is difficult to be defined. But we
realize that the smaller the flow is, the less possibility to be
overloaded. For a radial feeder, the sum of the flow for each
phase is a constant disregarding to phase swapping. Therefore
the ideal flows are set at the mean of the flows for each
phase. A penalty cost function, is proposed to coerce the
flows towards as small as possible. Therefore each phase
flow will converge to the mean of flows. We define some
new terms as following;

Number of phase swapping:
H, = 21*,1°) @
!

where é(ﬁk - 7,70) = 0 3)

The penalty cost of the flows;

Hy = T, z‘:g[—fiﬂj @
i C

ph A

0 Fx<03

-1 -0.7
e

where g(x) =qe" - Ff03<x<10 5

PN 0 i xzl0

The overall index for phase swapping problem:
H=8-H +1-H,. (6)
where,

f,r,ph

]

is the phase flow on branch j,ph=a b, ¢

-~

is the original tapping scheme at node i,

R |
LS

is the tapping scheme at node / int kth result candidate,
C; isthe capacity of jth line segment
w, is the weighting factor of one segment j

& is the cost for each node phase swapping
T the coefficient for unbalanced penalty cost

H  is the system balancing overall index
The number of phase swapping, H, is an indicator for the

costs of phase swapping. The penally function, H,, is an

indicator for the contra-benefit of phase balancing, ie. the
smaller the penalty function is, the more balanced the feeder
is. It covers some special considerations, for example, there is
no penalty to the light loaded feeders. The penalty grows fast
if the flow is approaching its capacity, especially for
overloaded situation. The weighting factor is assigned based
on the importance of each branch., The system balancing
overall index, H, is to compromise the cost and the benefits
for phase swapping.

For the penalty cost function defined in (4), if the flow
is far below the 30% of capacity, then the penalty cost is zero
no matter how unbalanced it is. The penalty costs increase
faster as flows increasing, Consequently, phase balancing
focuses more on heavily loaded branches than the lightly
loaded branches. When the phase swapping cost and penalty
cost function are invelved, phase swapping problem becomes
a nonlinear integer-programming problem. The problem is
difficult to solve by analytical methods, But heuristic
methods can be good alternatives.

We will minimize the total cost (phase swapping cost
and penalty cost) defined in (5). The objective function is a
non-linear and non-derivative function that is difficult to be
solved by traditional techniques. However, SA is easy to
handle nonlinear and non-derivative objective function. Since
the candidate of phase swapping is easy to be generated and
the objective function is easy to be evaluated also, simulated
annealing is good at solving the large-scale phase swapping



problems. At the same time, the constraint violation is
checked in a straight forward manner, If the candidate
violates the constraints, the candidate is discarded.

4. Implementation Procedures

For the phase balancing problem, the unbalanced node
and load tapping. are randomly seclected to generate a
candidate solution based on the current feeder tapping
scheme. DC load flow is performed to update the system
status, The index H in equ. (5) is then evaluated. If the H

value increases (deteriorated solution), then the candidate is.

accepted when its probability of acceptance based on the
Boltzmann distribution is greater than a uniform random
number between 0 and 1. If H decreases (better solution),
then the candidate is accepted. Once the candidate is
accepted, the next candidate is generaied from the new
solution. As the iterations going on, the acceptance
probability of the deteriorated solution is decreasing. The
search process terminates when the temperature is cool
enough,

SA for phase swapping problem needs four basic
components [12]:

Conﬁgﬁration: a model of what a legal phase swapping is.
Cne and only one load is assigned to phase line at a node.

Move Set: At each admissible unbalanced node / lateral,
there are at most 6 phase tapping schemes. Each one is a
valid move. If the candidate is identical with the current one,
then generate another one. Each move will affect the upper
stream flows.

Cost Function: The cost function can be unbalanced flow,
balancing index, and the overall cost function defined in (6).
In the following discussion, the overall cost function is to be
minimized and therefore the feeder is balanced.

Cooling Schedule: is the kep to ensure that SA is convergent
to optimal solution. Specially, we need a starting hot
temperature and rules to determine when the temperature
should be lowered, how much the temperature should be

lowered, and when annealing should be terminated. In-

summary, the cooling schedule is defined in the four terms:
initial temperature, final temperature, number of iterations,
and ¢ooling rate.

Initigl Temperature (1,,.): The initial temperature is

determined in such a-way that practically all possible phase
swapping could be made. The initial temperature selected
here is the biggest difference of objective function for any
two phase swapping schemes.

Final Temperature (1,,, ). The final temperature is

determined in such a way that at the optimal point the
expected improvements in the objective function become
negligible,

1511

Number of iterations (N ). The number of iterations is
determined by the & (k = 10 ~ 50) times of the number of
possible options. In the example, k is /0. The number of
options is dependent on the number of nodes in the feeder
and the number of the phases at each node.

Cooling Rate (7., ): The temperature cooling rate is about

0.50-0.99. It is the function of the initial temperature, the
final temperature, and the number of iterations. Since only
one candidate is performed at each temperature level, the
cooling rate is determined by

¢
. Sfinal
‘r::‘onﬁng - ' (7)
Linitiot
For example, initial temperature is 450, final temperature is
0.1, and the number of iterations is 300. Then the cooling rate

is 0.9723.

Anrealing process requires to spend a long time at the
temperatures in the vicinity of the freezing point so that
bigger crystal is resulted. For simulated annealing, the
temperature goes down at the beginning faster than at the
end. For example, the cooling rate is 0.95 at the first 50
iterations, then it changes to 0.99 afterwards. Spending a long
time enough at temperature in the vicinity of the freezing
point ensures the optimal solution. This will save the
computation efforts by 100 iterations whlle the optimality -
will not be affected at all.

5. Comparison with Greedy Algorithm,
Quenching Algorlthm and Simulated
Annealing

Greedy algorithm is to randomly pick up a variable and
set it to the optimal value with the others unchanged. This
process continues until the 20 consecutive iterations can not
improve. Greedy algorithm is highly dependent on the initial
status and the random numbers. For the phase swapping
problem, the greedy method is to randomly select a node in
the feeder and evaluate all the possible tapping options at this
node, The best tapping scheme is taken for each candidate
node. The new system is at least not a deteriorated solution, 1f
a node is selected more than once consecutively, phase
swapping evaluation is processed only once. The process will
stop when the pre-defined epoch limit is reached or when
system objective cannot improve in 20 consecutive iterations.
The greedy algorithm cannot avoid the local minimum, thus
does mot guarantee to get the optimal phase balancing
scheme.

Quenching algorithm is the same as simulated annealing
algorithm except that it only accepts the candidate when the
objective function is improved. In quenching algorithm,
starting with the current system status, we iry to perturb the
known solution to improve the objective. For the phase
swapping problem, a random phase swapping scheme for 2
randomly selected node is generated. Then the system
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objective index is evaluated. If the objective is improved,
then the change is accepted; otherwise the change is
discarded. The process stops when the improvements cannot
be found in 100 consecutive iterations. The result is highly
dependent on the initial status and the random number series.
Quenching algorithm, each new perturbation moves the
system to a restrictedly improved solution from the previous
one, may be trapped in a local minima in many cases.
Therefore quenching algorithm is carried out several times
with the different starting point and different random series,
and the best solution is saved as the global optimum.

Simulated Annealing accepts the deteriorated solution
probabilistically [10]. For the phase swapping problem, a
random phase swapping scheme for a randomly selected node
is generated. Then the system balance index is evaluated. If
the objective is improved, then the change is accepted. If the
new sclution is a deteriorated solution, then it is accepted if
the acceptance rate (calculated based on Boltzmann
distribution function) is greater than a uniform random
number between 0 and 1; otherwise it is rejected. The process
continues until the final temperature is reached. SA is not
sensitive to the initial status of the system and the random
number series. It can find the global optima in most cases.

In this section, three approaches are proposed and
compare to find the optimal solution to the phase balancing
problem, which is a nenlinear combinatory problem. The
only differences among these algorithms lie in the acceptance
rules and randomness of the candidate, For example, greedy
algorithm only randomly select a node and pick up the best
phase swapping. Quenching afgorithm randomly pick a node
and a phase swapping scheme but only the better solution is
acceptable. Simulated annealing not only randomly pick up a
node and a phase swapping scheme but also accept the
“deteriorated solution probabilistically. Theoretically SA will
find the global optima in most cases but it takes longer time
to solve the problem. Greedy algorithm is the fastest method
but the optimality is not as good as the other two methods,
When we select the approach, we need to compromise the
optimality and the efficiency of the algorithm.

6. lllustrative Example

A five-node system in Figure 2 is used to illusirate the
Simulated Annealing algorithm for phase swapping problem.
At same time, the quenching algotithm and greedy algorithm
are also applied to the example.

i= ) 2 3 4 5
i=
1 2 3 4 L1
N Iia Lia 5
Sk I Ly Iy
e e I I,
d] mdf.hl dlﬁ d.ludl.ﬁl d,.&'

Figure 2: A 5-node feeder system

The cost function for this phase swapping problem is
(6) It is a nonlinear and non-derivative integer function. This

optimization problem cannot be solved by conventional
mathematical methods, while can be solved by Simulated
Annealing, Quenching Algorithm, and Greedy Algorithm.
The resuits of the five-node system for 100 runs are listed in
Table 1. The number 79 means greedy algorithm converges
to optima (the minimum cost is 438) 79 times of 100 runs.
The most runs are convergent to the optima. The best
approach is quenching algorithm method for this problem, If

the system is larger, then SA performance will be better,

Table 1. Comparison on optimality

Solution Optima Near- Near-
{438) optima 1 optima 2
Method {444 {448}
Greedy 79 0 21
Quenching 83 3 14
SA 52 29 19

To compare- the optimality and efficiency of the
proposed approaches, many tests have been done on from 10
to 30-candidate systems with random unbalanced loading.
For each system, each approach runs 20 times, which is large
enough to provide statistical significant results, to get the
average cost value and the average CPU times. Every
approach pursues convergence for each individual run.

Table 2. Comparison on computation time

andidate | 10 15 20 25 30
Method

Greedy 17 32 61 77 179
" Quenching 14 41 69 105 184
SA 63 102 207 334 546

Table 3. Comparison on optimal cost

didate | [0 15 20 25 30
Method

Greedy 661 539 991 931 1645
Quenching 66! 539 991 931 1645 .
SA 660 539 991 928 | 1643

Table 4. Comparison on average cost

didate | 10 15 20 | 25 30
Method

Greedy 668 550 1001 | 943, | 1660
Quenching 665 547 1600 | 939 1659
SA 672 543 997 943 1658

The results in Table 2-4 indicate that annealing can find
the better solution than other methods in most cases.



However SA is a time-consuming approach for phase
balancing problems than other methods, Quenching algorithm
is faster and its solution is reasonable good. Greedy algorithm
is slightly worse than Quenching algorithm from optimality
point of view. Quenching algorithm and Greedy algorithm
are also good methods to solve farge-scale phase balancing
optimization problems if the optimality is not a critical issue.
Even SA, quenching algorithm, and greedy algorithm do not
guarantee the optimality but they pravide solutions that are
close to the optimal one. But only Simulated Annealing has
potential to avoid the local minima.

7. Conclusion

Growing pressures on competition have forced utilities
to seek any opportunity to reduce cost and to improve quality.
Phase swapping is one of effective way to reach their goal.
But if phase balancing problems are modeled as non-linear
integer programming, then it is difficult to solve by the
iraditional methods such as Mixed Integer Programming.
Simulated Annealing is a promising approach to solve the
large-scale feeder systems. It can not guarantee the optimal
soluticn but it has potential to avoid local minimum. It is
time-consuming method but it can provide a better solution
than other heuristic methods (e.g. Greedy algorithm,
Quenching algorithm). It can solve the phase swapping
problems considering voltage drops and energy losses, which
optimization methods are not afford to solve large scale phase
balancing problems.
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