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Abstract—We formulate several standard digital image pro-
cessing operations as circuits suitable for implementation in
real-time analog VLSI, including nonlinear piecewise-constant
image restoration using mean field annealing as a global opti-
mization technique. We report test results from an imaging chip
that performs user-controlled convolution of the image. We use
simulated results for mean field annealing (MFA) in SPICE to
show that deconvolution could be implemented by rearranging
the subcircuits that perform the corresponding convolution. We
report the results of realizing deconvolution in this way on a
printed circuit board.

Index Terms—Analog VLSI, CMOS image acquisition, decon-
volution, image processing, MAP estimation, nonlinear Bayesian
processing, piecewise smooth restoration, real-time, regulariza-
tion.

I. INTRODUCTION

REAL time image processing is limited to the simplest
operations, such as sums of products, linear convolu-

tions, and median filters. Many interesting problems in image
processing and machine vision are numerically too intensive to
compute algorithmically, either because they involve nonlin-
ear image formation models such as in magnetic resonance
imaging [6]–[8], or because they can be solved only by
introducing nonlinear techniques such as simulated annealing
[10], [17]. In spite of their computational complexity, such
techniques are potentially more useful in images than in
a time series, because images exhibit true discontinuities
(occlusion edges) which cannot occur in band-limited time
series data. Approximate solutions of the resulting global
optimization problem are faster than simulated annealing and
they also exhibit potentially useful parallelism [9], [13], [20],
but they are still too slow for real-time applications, even when
implemented on a 64-node hypercube parallel architecture [4].
Alternatively, for some special cases, it is possible to obtain
results qualitatively similar to those from standard image
processing techniques [5], [18]; however, those approaches
do not exploit the mature and general technology that already
exists in image processing and machine vision [11], [14], [16].

In this paper, we will consider implementing general image
processing operations in analog VLSI. We are particularly
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interested in laying the foundation for incorporating nonlinear
operations and global optimization into VLSI imaging.

Images degraded by imperfect sensors or transmission can
be modeled usefully [12], [15], as the sum of random noise
image and a convolution of the true imagewith a point
spread function or blurring kernel. We will write

(1)

for the degraded image so that for is
the th pixel of the pixels in image . The additive noise

comprises where . The convolution of
with is denoted by the operator, defined by the relation

(2)

so that theth pixel of the convolved image is a weighted
sum of pixels of .

Circuit (A) in Fig. 1 shows one cell of a spatial convolution
filter for one–dimensional (1–D) images. Two–dimensional
(2–D) versions are obtained from these by adding connections
as in Fig. 6. In either case, the complete filter comprises an
array of identical cells. Input voltage is applied at input
node at the left-hand side of this cell and output voltage

appears at the right-hand side of the cell. The follower
reproduces the input voltage at resistor which connects
the opamp buffer to the output node of cell . The
output nodes of cell and cell are connected by resistor

. The output node of cell is connected to cell
below it by another which is not shown in this cell.
The sum of the currents entering output node is

(3)

so that

(4)

which can be written in matrix form as

(5)

where the matrix is the second
difference operator which is a discrete approximation to the
second derivative operator, and plays
the role of a distance.

The output is a smoothed version of the input . This
is easiest to see when there are many cells and the input array
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Fig. 1. Schematic for one cell of a convolution circuit.

is smoothly varying, so that a continuous approximation
holds. In that limit, the Fourier transform of (5) is

(6)

or

(7)

which is a low-pass filter in the (spatial) Fourier domain. In
direct space, this particular filter is the result of convolving
the input with the blurring kernel (normalized to have unit
integral)

(8)

as can be verified by computing its Fourier transform. This
circuit therefore attenuates spatial frequencies higher than

but passes lower spatial frequencies. Even though the
preceding analysis quantitatively holds only in the continuous
limit, this low-pass behavior is qualitatively correct for a
discrete array.

The simplest algorithmic approach to estimatinggiven
the blurred image and the blurring kernel is to attempt to
ignore the noise and solve

(9)

in the Fourier domain. The resulting inverse filter is unstable
[15]. The Wiener filter for this problem is stable but cannot
preserve sharp edges [15], [19]. We will investigate linear
and nonlinear Bayesian techniques for removing noise with-
out degrading edges. For independent, identically distributed
Gaussian noise, the standard deviation , . We restrict
ourselves to the zero-mean case, for ,
since the case in which every pixel is shifted by a constant is
not usually a problem in imagery.

Circuit (B) in Fig. 2 is one cell of a circuit that performs
an inverse filter for spatial deconvolution. It contains the same
resistive network as Circuit (A) but in the (vector) feedback
path. Circuit (B) can be analyzed with Kirchhoff’s laws. The
sum of the currents entering node is

(10)

Fig. 2. Inverse filter for restrictedh and negligible noise, as discussed in
the text.

so that

(11)

or

(12)

for the array of internal voltages at nodes , which are
adjusted by the array of opamps to make coincide
with the input voltages at nodes in the direct domain, so
that

(13)

This result is satisfactory only when the power spectrum of
the noise falls faster than .

Another important operation in digital image processing is
the least mean square (LMS) estimate. An LMS inverse filter
minimizes the mean squared error by
solving the vector equation

(14)

where the superscript indicates the matrix transpose. This
is equivalent to solving

(15)

for the pseudo-inverse

(16)

Circuit (C) in Fig. 3 shows one cell of a circuit that imple-
ments an LMS filter. Circuit (C) can be analyzed formally as
before, but it can also be understood directly in terms of the
behavior of Circuits (A) and (B). In Circuit (C), the output of
the opamp is the desired estimate. This signal is blurred by
the same resistive network as before and this blurred estimate

is fed back to a circuit function which outputs the
difference between the input applied at node and .
This difference is then convolved with again before it is
input to the opamp (with its negative input tied to 0), so that
the opamp adjusts its output at to make ,
a condition equivalent to (15) for symmetric.

The pseudo-inverse estimate ofproduced by Circuit (C)
is stable for a larger class of kernels, but is still ill-conditioned
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Fig. 3. LMS deconvolution filter for generalh as discussed in the text.

because of the same sensitivity to small high spatial frequency
variations in the input .

Regularization techniques are typically used to condition
such problems. These techniques exploit additional (prior)
information to counteract high frequency noise. Bayesian tech-
niques such asmaximum a priori(MAP) belong to this class
but enjoy the advantage of (at least starting from) rigorous
results from statistics and probability. MAP estimates that
preserve sharp edges while removing noise lead to multimodal
(i.e., nonconvex) global optimization problems.

Circuit (D) implements a MAP estimation of and can be
operated in such a way to use mean field annealing (MFA) to
select deeper minima in the resulting multimodal optimization
problem. MFA is a kind of continuation method related to
simulated annealing and is particularly effective for imaging
problems. Circuit (D) can be understood just as Circuit (C),
except that the vector of estimatesis adjusted to make the
vector , where is the
regularization functional.

In this approach to image processing, we define the optimal
estimate as the image that minimizes

(17)

where contains a problem-dependent constantand the
sums are over all pixels [1], [3], [10], [13]. A convenient
for piecewise-constant restoration in one dimension is

(18)

where is an artificially introduced temperature-like variable
that can be gradually reduced (i.e., annealed) andis a
difference kernel, so that . (Since the
sum in (17) is over all pixels, it is sufficient to include only
terms involving right differences.) For 2–D images, a similar
term involving vertical differences must be included in the
argument of the exponential.

The effect of can be understood by consideringfor
a pair of adjacent pixels at extreme values of :
when the pixel values differ by much less
than and increases almost quadratically with increasing
argument. On the other hand, when , becomes

approximately independent of the difference in pixel values.
The combined effect is to blur adjacent pixels with similar
values, but to preserve significant differences at occlusion
edges.

Circuit (D) in Fig. 4 regularizes the solution of Circuit (C)
by minimizing the posterior error
with respect to , where the regularization term can be
thought of in Bayesian terms as the negative of the logarithm
of a prior probability distribution of [1], [3], [10]. The
gradient of appears in Circuit (D) as

(19)
The function can be chosen to be linear or nonlinear; either
can be used to suppress noise, but edges can be preserved
only with a nonlinear . For linear , where
is multiplication by some real number, the last two terms of
(19) become the second difference in

(20)

which penalizes ’s that exhibit high frequency spatial vari-
ation.

For nonlinear , such as for , or for the
derivative of in (18), the behavior of the filter circuit
is more interesting and can produce an estimatethat is
piecewise smoothwith sharp edges between smooth regions.
Unfortunately in this case, Circuit (D) in Fig. 4 is multistable
and can settle in any of several states, each corresponding to
some (typically suboptimal) local minimum of where
vanishes. MFA can be used to drive the circuit to the lowest
accessible minimum of and can be implemented in Circuit

by continuously decreasing the voltage atfrom a large
value down to zero in each image frame.

II. SIMULATION OF MFA DECONVOLUTION IN 1–D

Fig. 5 shows the result of simulating an MFA continuation
in one dimension. An image was constructed with an interior
three-pixel foreground at one volt , and a
disjoint seven-pixel background at zero volt

. The image was then blurred
by convolving with a kernel of using SPICE on a
circuit containing ten copies of Circuit (A) with resistor values
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Fig. 4. Bayesian deconvolution filter that can be operated to perform MFA as discussed in the text.

Fig. 5. Simulation results for MFA deconvolution on a one dimensional image of ten pixels as discussed in the text. The ordinate is the voltage representing
the annealing temperature and is read from high initial value at right to a low final value at the left. The top three and low seven voltages exhibit the
added noise which gradually vanishes as each signal converges to its true value.

k and k . The resulting blurred
signal was further corrupted by adding high-frequency noise
sampled from a Gaussian distribution with zero mean voltage
and standard deviation of 0.1 V to get.

Deconvolution was performed by an array of ten copies
of Circuit (D) in Fig. 4 with a nonlinear circuit element
corresponding to (18). The temperature-like control voltage
was reduced from V down to V to obtain Fig. 5,
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Fig. 6. Schematic for theij pixel and connections to neighboring pixels.

which is best read from right to left (from high to low )
as in algorithmic annealing. At voltages corresponding to high

, Circuit (D) behaves like the (linear) LMS deconvolution
filter because a small signal approximation holds for the
exponentials of (18) for the in Circuit (C). The right-hand
side of Fig. 5 is therefore the LMS deconvolution. This LMS
estimate varies 20% from the correct values of1 and 0,
because LMS deconvolution amplifies the 10% added error.
As the temperature-like voltage is reduced, the estimates for
the three pixels of the foreground converge to 1.0 V and the
values for the remaining background pixels converge to 0.0 V,
to within a few percent. The largest error is 0.07 V and the
average error is 3% of the range of 0 to 1 V; this is more than
a factor of five better than a LMS filter. Other simulations
show that errors are even smaller at lower values of the
temperature-like voltage, but these are difficult to simulate in
SPICE.

III. SIMULATION OF CONVOLUTION IN ANALOG VLSI

We simulated a chip that acquires a 2-D image and performs
a 2-D convolution on it using analog processing elements in
each pixel shown schematically as in Fig. 6. The calculations
for all the pixels are performed in parallel. Voltage-controlled
local and lateral resistors are used to determine the convolution
kernel.

Each pixel comprises a buffered photodetector circuit, a
local voltage-controlled resistor, two lateral voltage-controlled
resistors, and a pixel output buffer amplifier. The photodetector
circuit [18] consists of a vertical p-n-p transistor which is
loaded by two series diode-connected pMOS devices, as shown
in Fig. 6. Incident photons create electron–hole pairs in the
bipolar device, resulting in a photocurrent proportional to the
light intensity. The photocurrent drives the two load devices,
and the voltage across them is buffered to the local resistor
which is connected to the output node. The MOS devices
are biased in the subthreshold region, where the relationship
between voltage and current is approximately logarithmic over
a range of approximately four orders of magnitude. The output
node is connected to neighboring output nodes by two lateral
resistors (down and right) and by two wires (left and up)

Fig. 7. Schematic for opamps used in each pixel.

Fig. 8. Schematic and symbol for the voltage-controlled resistors which
provide user control over the convolution kernel.

and is buffered to external connections. All local resistors are
controlled by a single control voltage , and all lateral
resistors are controlled by a second control voltage .
The supply voltages are 9 and 9 V.

The two-stage CMOS operational amplifier shown in Fig. 7
in a unity-gain feedback configuration is used to buffer the
photodetector and the output. The opamp transistors are sized
to provide sufficient low frequency current over a wide input
voltage range.

The voltage-controlled resistors are implemented by parallel
nMOS and pMOS transistors whose gates are driven by control
voltages with symmetrical values above and below ground, as
shown in Fig. 8. By using both device types with symmetrical
control voltages, the MOS body effect can be largely cancelled,
and so a true floating resistor can be created. These resistors
have a fairly linear control range that spans about a factor of
four in resistance values. Therefore, we have a 16 : 1 range of
resistance ratios resulting in a 4 : 1 range invalues for the
convolution kernel.

We laid out the chip using MAGIC. The physical design
of each pixel cell is illustrated in Fig. 9. The square area
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Fig. 9. MAGIC layout of one pixel of the image sensor with user controllable
low-pass filtering.

near the left center of the cell is the phototransistor, and the
two diode-connected load transistors are located immediately
above it. The pMOS and nMOS transistors of the photodetector
buffer amplifier are placed in the upper left and lower left
areas, respectively. Just to the right of the buffer are the two
transistors of the local resistor, and further to the right are the
two lateral resistors. Running vertically through the middle of
the cell are the four resistor control voltages. The connection to
the adjacent pixel below is routed between the control voltages
at the lower center of the cell and the connection to the pixel to
the right is seen in the upper right corner. The wire in the upper
left portion of the cell provides the connection from the pixels
to the left and above. Finally, the output buffer, multiplexer
gate transistor, and output bus compose the rightmost quarter
of the cell layout.

The unblurred input and the blurred output of an array of 16
48 pixels was simulated. For the unblurred input of Fig. 10

the simulated output from the convolution chip is shown in
Fig. 11 for V and V.

We simulated the transient behavior of a group of pixels,
including realistic timing and control logic (but with a sim-
plified model of the phototransistor), for many values of the
voltages and . RC oscillations could be observed
at the output when the inputs representing photocurrents were
abruptly changed, but we could produce no oscillation with
any characteristic time that exceeded 1s. We conclude that
the proposed blurring circuit is faster than is necessary for
real time operation, which requires only that each cell provide
stable outputs appropriate to changes in photocurrent inputs
within a few tens of milliseconds. For convolution, the settling
time of any group of pixels is and is independent
of the size of the array for more than pixels, so the
system speed will always be limited by I/O rather than by

Fig. 10. Input to the simulation of a 16� 48 cell convolution chip. The
numbers along the side and bottom are the cell indices.

Fig. 11. Simulated output from the convolution chip forVlocal = �9 V
andVlateral = �3 V. The numbers along the side and bottom are the cell
indices as in Fig. 10.

the settling time for cells. Our 16 48 cell circuit will
operate at video frame rate (30 frames/s) with our current
I/O design. Much larger arrays would require interleaved I/O,
but the image processing operations are relatively local (i.e.,
they occur over a distance of pixels) and therefore do
not incur any additional communication delay. Our experience
with algorithmic convolution suggests that for and for
more than 256 256 pixels, convolution will be faster in
analog VLSI than on a general purpose serial computer such
as a Sun Ultra 1. The complexity of algorithmic convolution
increases as up to large enough to prefer digital FFT.
Image processing programs we have written in C and run on a
200-MHz Pentium cannot doany arithmetic processing at 30
frames/s for 8-bit images as small as 512512 pixels.

IV. A CONVOLUTION CHIP

We fabricated an 8 8 version of this convolution chip,
shown in Fig. 12. On the actual chip, the interior pixels are
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Fig. 12. Photograph of 8� 8 convolution chip.

connected as described above. At each edge of the array,
all eight nodes are connected, through lateral resistors, to an
externally accessible bus. Sixteen extra lateral resistors were
added for the top and left edges. This arrangement allows
flexibility in exploring the effects of alternative boundary
conditions for the convolution.

Each pixel has an area of 160m 160 m. The entire
circuit covers about 1.8 mm 1.8 mm and was implemented
in a 2- m CMOS n-well two-metal process. The second metal
layer is used as a light shield over all circuitry except the
vertical p-n-p. This layer also serves as the conductor for the
photodetector reference voltage, so that a third metal layer
would simplify the wiring. Except for the photodetector, the
circuit scales with feature size. We believe that the photodetec-
tor can also be scaled directly, but we have not yet shown this.
Therefore, a conservative estimate of the size of each pixel in
a 0.5- m three-metal process is 80m 80 m.

Since it is not possible to give all 64 pixels a dedicated
output pin, the outputs are multiplexed off the chip one row
at a time. A 3-to-8 decoder is used to select a single pixel
row to be gated onto the eight output lines. The decoder is
implemented in static CMOS logic as is shown for one corner
of the chip in Fig. 13. This same scheme would suffice up to
64 64 pixels, but larger arrays would require interleaved
output.

Using a microscope, we illuminated the convolution chip
with the cross-shaped pattern shown in Fig. 14, for which the
convolution effect ( ) was minimized by setting
V, V, V, and V.
Using the MOSIS characterization for this run and for these
voltages, kV and is effectively infinite, so
that . The output of the chip is inverted from the incident
light signal and for this small the chip produces an image
with no filtering (i.e., smoothing) at all. Fig. 15 was obtained

Fig. 13. Row select logic for output multiplexing (only lower left 4� 4
corner is shown here).

Fig. 14. Output from the convolution chip with minimal convolution.

with the control voltages set to V, V,
V, and V, which corresponds

to a predicted kV and kV to obtain
a predicted and , but
both the resistors are somewhat nonlinear for these voltages.
Examination of Fig. 15 indicates an actual value of
or .

Figs. 14 and 15 have been scaled independently to maximize
contrast in each figure. The actual voltages output in the first
case were from 0.65 to 2.92 V with a range of 2.27 V. In the
second case, measured output voltages were from 1.43 to 2.01
V, giving a much smaller range of 0.58 V due to blurring.

Also evident in Figs. 14 and 15 is the fixed pattern noise
due to pixel variations that is typical in CMOS imagers. As
a side effect, the convolution also smoothes out this noise
for large enough although this effect is not significant in
Fig. 15. Nevertheless, even for imagers that filter their output,
correlated double sampling would provide superior results for
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Fig. 15. Output from the convolution chip with visible convolution.

Fig. 16. Measured input signal to PCB,Dashed line:convolution� � 1 pix-
els, 10-k
 local resistors, and 10-k
 lateral resistors.Dotted line:convolution
� � 4:5 pixels, 10-k
 local resistors, and 2.2 k
 lateral resistors.

fixed pattern noise, since it is more specific and does not reduce
spatial resolution. Correlated double sampling is completely
compatible with the filtering imagers we are proposing and
would be interesting to include in subsequent chips.

V. A DECONVOLUTION PCB

We implemented three 1-D 16-pixel image processing mod-
ules on PCB using commercial IC’s: a 16 pixel 1-D decon-
volution analog circuit with user-adjustable inputs containing
16 copies of Circuit (D) in Fig. 4, a convolution PCB that
contains 16 copies of Circuit (B) in Fig. 1 with replaceable
resistor arrays to provide user-controllable for blurring,
and a 16-pixel dc vector signal generator that provides 16
potentiometer-controlled voltages. Input power conditioning
is provided by an LM317T linear voltage regulator. All other
active circuit functions are performed by LM324 quad single
supply low-power opamps. A 9-V battery provides power.

Fig. 16 shows an (spatial) impulse input (solid line) and
convolved outputs for two different blurring kernels, obtained

Fig. 17. Dashed line:measured input to deconvolution array.Dotted line:
the corresponding deconvolution as measured from the PCB for the smaller
kernel (10-k
 source resistors and 10-k
 transverse resistors).

Fig. 18. Dashed line:convolved input to deconvolution array.Dotted line:
the corresponding deconvolution as measured from the PCB for the larger
kernel (10-k
 source resistors and 2.2-k
 transverse resistors). Note the high
spatial frequency noise with amplitude of about 0.05 V in the deblurred output.

by manually swapping the lateral resistors between measure-
ments.

Measured results from the deconvolution module are shown
in Figs. 17 and 18 for the blurred signals shown in Fig. 16.
Fig. 17 shows that the output signal is numerically almost
identical to the original unblurred input for the smaller kernel.
Fig. 18 shows that for the larger kernel the output signal begins
to exhibit the high spatial frequency noise expected from a
simple inverse filter.

VI. CONCLUSION

We formulated several standard image processing operations
in terms of circuits suitable for implementation in analog
VLSI.

We simulated a 16 48 pixel chip for user-controlled con-
volution, and argued that larger versions of such a chip could
be expected to run at video frame rate and that chips larger
than 256 256 pixels are expected to exceed algorithmic
processing speeds.
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We fabricated a 8 8 convolution chip and reported
favorable results for user-controlled convolution in analog
VLSI.

We presented SPICE simulations of piecewise-constant
MFA image restoration for a 10-pixel 1-D image; this is
a more complex image operation that cannot be performed
algorithmically in real time even for 32 32-pixel images.

We fabricated a 16-pixel one-dimensional PCB arrays that
perform deconvolution in real time.

By jointly considering theory, simulations, test results, and
experience with algorithmic image processing, we argued
that convolution, deconvolution, and even MFA piecewise-
constant image restoration can be realized similarly in analog
electronics, and that moderately sized analog VLSI imple-
mentations would provide higher performance that algorithmic
approaches, especially for more complex image processing
operations.
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