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Abstract—Signature-based Intrusion Detection 

Systems (IDSs) monitor network traffic for 
security threats by scanning packet payloads for 
attack signatures. IDSs have to run at wire speed 
and need to be configurable to protect against 
emerging attacks. In this paper we consider the 
problem of string matching which is the most 
computationally intensive task in IDS. A 
configurable string matching accelerator is 
developed with the focus on increasing throughput 
while maintaining the configurability provided by 
the software IDSs. Our preliminary results suggest 
that the hardware accelerator offers an overall 
system performance of up to 14Gbps. 
 
 

Index Terms—Intrusion detection, Snort accelerator, 
string matching 
 

I. INTRODUCTION 
 

T raditionally networks have been protected using 
firewalls that provide the basic functionality of 

monitoring and filtering traffic. Firewall users can 
then write rules that specify the combinations of 
packet headers that are allowed through. However, 
not all incoming malicious traffic can be blocked and 
legitimate users can still abuse their rights. Intrusion 
Detection Systems (IDSs) go one step further by 

inspecting packet payload for attack signatures. 
Currently, most IDSs are software based running on a 
general purpose processor. Snort [1] is a widely used 
open-source IDS in which the rules refer to the header 
as well as to the packet payload. A sample Snort rule 
that detects CGI-PHF attack is shown in Fig. 1. The 
rule examines the protocol, source IP address, source 
TCP port, destination IP address and destination TCP 
port. The part enclosed in parenthesis is the rule 
options that are executed if the packet headers match. 
The content option indicates that the packet payload is 
to be matched against the string enclosed in double 
quotes. 

Intrusion detection can be divided into two 
problems; packet filtering or classification based on 
header fields and string matching over the packet 
payload. The first problem was studied extensively in 
the literature and many algorithms were suggested [5]. 
A recent study [4] showed that the string matching 
routines in Snort account for up to 70% of the total 
execution time. We also have studied the snort rules 
and have showed that 87% of the rules contain strings 
to match against. Therefore, the second problem of 
string matching is the most computationally intensive.  

 
 
alert tcp any any -> 10.1.1.0/24 80 (content: 

“/cgi-bin/phf”) 

 
Fig. 1. Sample Snort rule 

 
The explosion of recent attacks by Code Red and 

MSBlast affected the productivity of computer 
networks all over the world. It is also becoming 
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increasingly difficult for software based IDSs running 
on general purpose processors to keep up with 
increasing network speeds (OC192 and 10Gbps at 
backbone networks). This has prompted the need to 
accelerate intrusion detection and to maintain the 
configurability needed to detect new attacks. Several 
hardware accelerators have been proposed. For 
example, Deterministic Finite Automata (DFA) 
mapped on an FPGA has been used to accelerate 
string matching. However, DFA based 
implementations achieve low throughput and are 
complex to build and configure. On the other hand, 
discrete or parallel comparators were used to achieve 
higher throughput at the expense of increased area 
and poor scalability. CAM based solutions reduce the 
area used by discrete comparators and achieve similar 
throughput. Finally, Bloom filters and hash functions 
were used to compress the string set, find probable 
matches and reduce the total number of comparisons. 
 

This paper focuses the most computationally 
intensive part of the problem that is the string 
matching of the packet payload against hundreds of 
patterns at wire-speed. We suggest a memory based 
accelerator that is reconfigurable and have high 
throughput. The IDS accelerator is composed of a 
software based component that runs on a general 
purpose processor, and a standard RAM based 
technique for FSM implementation. The software 
generates an FSM from the set of strings extracted 
from the Snort rule database. The FSM matches 
multiple strings at the same time based on the Aho-
Corasick string matching algorithm. This accelerator 
is flexible, easy to update and can achieve high 
throughput. The throughput increases as the on-chip 
RAM bandwidth increases. 
 

 The rest of the paper is organized as follows. 
Section II gives a background on string matching 
algorithms, summarizes IDS acceleration efforts and 
points out some of the differences between the 
proposed accelerator and the other architectures. 
Section III describes the suggested architecture for 
string matching. Section IV presents the simulation 
results, analyzes of the performance of the accelerator 
and compares it with previous work. Section V 
summarizes the contributions of this paper and 
discusses directions for future work. 

II. RELATED WORK 
 

Most known IDS implementations use a general 
purpose string matching algorithms, such as Boyer-
Moore (BM) [3]. BM is the most widely used 
algorithm for string matching, the algorithm compares 
the string to the input starting from the rightmost 
character of the string. To reduce the large number of 
comparisons, two heuristics are triggered on a 
mismatch. The bad character heuristic shifts the 
search string to align the mismatching character with 
the rightmost position at which the mismatching 
character appears in the search string. If the mismatch 
occurs in the middle of the search string, then there is 
suffix that matches. The good suffix heuristic shifts 
the search string to the next occurrence of the suffix 
in the string. Fisk and Varghese suggested a set-wise 
Boyer-Moore-Horspoolalgorithm specifically for 
intrusion detection [12]. It extends BM to match 
multiple strings at the same time by applying the 
single pattern algorithm to the input for each search 
pattern. Obviously this algorithm does not scale well 
to larger string sets. 
 

On the other hand, Aho-Corasick (AC) [2] is a 
multi-string matching algorithm, meaning it matches 
the input against multiple strings at the same time. 
Multi-string matching algorithms generally preprocess 
the set of strings, and then search all of them together 
over the input text. AC is more suitable for hardware 
implementation because it has a deterministic 
execution time per packet. Tuck et al. [13] examined 
the worst-case performance of string matching 
algorithms suitable for hardware implementation. 
They showed that AC has higher throughput than the 
other multiple string matching algorithms and is able 
to match strings in worst-case time linear in the size 
of the input. They concluded that their compressed 
version of AC is the best choice for hardware 
implementation of string matching for IDS. 

 
 We use a different method to store the AC 

database in an SRAM that achieves a higher 
throughput than Tuck’s implementation while having 
a similar memory requirement. It works by building a 
tree based state machine from the set of strings to be 
matched as follows. Starting with a default no match 
state as the root node, each character to be matched 
adds a node to the machine. Failure links that point to 
the longest partial match state are added. To find 



matches, the input is processed one byte at a time and 
the state machine is traversed until a matching state is 
reached. Fig. 2 shows a state machine constructed 
from the following strings {hers, she, the, there}. The 
dashed lines show the failure links, however the 
failure links from all states to the idle state are not 
shown. This gives an idea of the complexity of the 
FSM for a simple set of strings. 

 
There have been several attempts to accelerate 

IDS recently, most of the implementations used 
regular expressions. Regular expressions are 
generated for every string in the rule set and a 
Nondeterministic/ Deterministic Finite Automata 
(N/DFA) that examines the input one byte at a time is 
implemented. FAs are complex, hard to implement, 
have to be rebuilt every time a string is added and 
result in designs with a modest throughput. Sidhu and 
Prasanna mapped an NFA into an FPGA [5]. Carver 
et al. wrote a regular expression generator in JHDL 
that extracts strings from the Snort database, generates 
regular expressions and a netlist for a Xilinx FPGA 
[6]. 

 
Other architectures used discrete comparators to 

exploit parallelism and achieve higher throughput. 
The disadvantage of this approach is the large area 
required. Cho et al., for example, used four parallel 
comparators per string [10], and Sourdis et al. used 
pipelining as well as discrete comparators to double 
the throughput [7]. Several implementations [8, 11] 
have used CAMs and DCAMs along with 
comparators to reduce the area and achieve similar 
throughput to the discrete comparators 
implementations. The drawback is the high cost and 
the high power requirement of CAMs. 

 
Recently, Dharmapurikar et al. [9] used bloom 

filters to perform string matching. The strings are 
compressed by calculating multiple hash function 
over each string. The compressed set of strings is 
stored into a small memory which is then queried to 
find out whether a given string belongs to the 
compressed set. If a string is found to be a member of 
a bloom filter, it is declared as a possible match and a 
hash table or regular matching algorithm is needed to 
verify the membership. Bloom filters use less 
memory, are easy to reprogram and achieve a higher 
throughput than DFA implementations. 

Tuck et al. [13] stored the high level nodes including 
the pointers to the next and failure states in the RAM. 
Because of that a huge memory of about 53MB was 
needed to store the Snort rules set. They used the 
analogy between IP forwarding and string matching to 
apply bit-mapping and path compression to the AC 
tree, reducing its size to 2.8MB and 1.1MB, 
respectively. Our approach stores the state tables in 
the RAM and uses a minimal logic to traverse the 
tables and find a match. The state tables are around 
3MB in size without the use of any compression 
techniques. 
 

III. ACCELERATOR ARCHITECTURE 
 
The accelerator is a part of the configurable network 
processor architecture shown in Fig. 3. It consists of a 
2-wide multiple issue VLIW processor with hardware 
support for eight hyper threads. The memory system 
consists of multi-port RAM and a high speed DMA. A 
number of configurable accelerators are used to speed 
up specific networking tasks such as IP forwarding, 
quality of service and string matching for intrusion 
detection. 
 

The IDS is composed of two components; a 
software that runs on the VLIW core and a hardware 
string matching accelerator. The software extracts the 
strings from the Snort database, creates the FSM tree 
and generates the state tables. The hardware is shown 
in Fig. 4. It implements a Mealy FSM and consists of 
a RAM to store the state tables, a register to hold the 
current state, and control logic to access the RAM and 
find a match.  

Incoming packets need to be matched only against 
a subset of rules that match the packet header in the 
Snort database. To avoid creating one large 
complicated FSM for all of the strings in the database, 
the software performs a simple rule classification 
resulting in a smaller FSM or state table for every 
class. Rules are classified based on the header fields, 
mainly the protocol and port numbers, into classes 
such as ICMP, FTP, SMTP, Oracle, Web-CGI…etc. 
This makes the software faster, reduces the RAM size 
and exploits parallelism between packets to increase 
the throughput. 



 
 

Fig. 2. Finite state machine diagram 
 

 

 
 

Fig. 3. Configurable network processor architecture 
 
 

 
Fig. 4. String matching accelerator 
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Table 1. State table 
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