
Configurable String Matching Hardware for
Speeding up Intrusion Detection

Monther Aldwairi*, Thomas Conte, Paul Franzon

 Department of Electrical and Computer Engineering, North Carolina State University,
Box 7911, Raleigh NC, 27695

{mmaldwai, conte, paulf}@ncsu.edu

Abstract—Signature-based Intrusion Detection

Systems (IDSs) monitor network traffic for
security threats by scanning packet payloads for
attack signatures. IDSs have to run at wire speed
and need to be configurable to protect against
emerging attacks. In this paper we consider the
problem of string matching which is the most
computationally intensive task in IDS. A
configurable string matching accelerator is
developed with the focus on increasing throughput
while maintaining the configurability provided by
the software IDSs. Our preliminary results suggest
that the hardware accelerator offers an overall
system performance of up to 14Gbps.

Index Terms—Intrusion detection, Snort accelerator,
string matching

I. INTRODUCTION

T raditionally networks have been protected using
firewalls that provide the basic functionality of

monitoring and filtering traffic. Firewall users can
then write rules that specify the combinations of
packet headers that are allowed through. However,
not all incoming malicious traffic can be blocked and
legitimate users can still abuse their rights. Intrusion
Detection Systems (IDSs) go one step further by

inspecting packet payload for attack signatures.
Currently, most IDSs are software based running on a
general purpose processor. Snort [1] is a widely used
open-source IDS in which the rules refer to the header
as well as to the packet payload. A sample Snort rule
that detects CGI-PHF attack is shown in Fig. 1. The
rule examines the protocol, source IP address, source
TCP port, destination IP address and destination TCP
port. The part enclosed in parenthesis is the rule
options that are executed if the packet headers match.
The content option indicates that the packet payload is
to be matched against the string enclosed in double
quotes.

Intrusion detection can be divided into two
problems; packet filtering or classification based on
header fields and string matching over the packet
payload. The first problem was studied extensively in
the literature and many algorithms were suggested [5].
A recent study [4] showed that the string matching
routines in Snort account for up to 70% of the total
execution time. We also have studied the snort rules
and have showed that 87% of the rules contain strings
to match against. Therefore, the second problem of
string matching is the most computationally intensive.

alert tcp any any -> 10.1.1.0/24 80 (content:

“/cgi-bin/phf”)

Fig. 1. Sample Snort rule

The explosion of recent attacks by Code Red and

MSBlast affected the productivity of computer
networks all over the world. It is also becoming

*Phone 919 513 2015; fax 919 515 2285

increasingly difficult for software based IDSs running
on general purpose processors to keep up with
increasing network speeds (OC192 and 10Gbps at
backbone networks). This has prompted the need to
accelerate intrusion detection and to maintain the
configurability needed to detect new attacks. Several
hardware accelerators have been proposed. For
example, Deterministic Finite Automata (DFA)
mapped on an FPGA has been used to accelerate
string matching. However, DFA based
implementations achieve low throughput and are
complex to build and configure. On the other hand,
discrete or parallel comparators were used to achieve
higher throughput at the expense of increased area
and poor scalability. CAM based solutions reduce the
area used by discrete comparators and achieve similar
throughput. Finally, Bloom filters and hash functions
were used to compress the string set, find probable
matches and reduce the total number of comparisons.

This paper focuses the most computationally
intensive part of the problem that is the string
matching of the packet payload against hundreds of
patterns at wire-speed. We suggest a memory based
accelerator that is reconfigurable and have high
throughput. The IDS accelerator is composed of a
software based component that runs on a general
purpose processor, and a standard RAM based
technique for FSM implementation. The software
generates an FSM from the set of strings extracted
from the Snort rule database. The FSM matches
multiple strings at the same time based on the Aho-
Corasick string matching algorithm. This accelerator
is flexible, easy to update and can achieve high
throughput. The throughput increases as the on-chip
RAM bandwidth increases.

 The rest of the paper is organized as follows.
Section II gives a background on string matching
algorithms, summarizes IDS acceleration efforts and
points out some of the differences between the
proposed accelerator and the other architectures.
Section III describes the suggested architecture for
string matching. Section IV presents the simulation
results, analyzes of the performance of the accelerator
and compares it with previous work. Section V
summarizes the contributions of this paper and
discusses directions for future work.

II. RELATED WORK

Most known IDS implementations use a general
purpose string matching algorithms, such as Boyer-
Moore (BM) [3]. BM is the most widely used
algorithm for string matching, the algorithm compares
the string to the input starting from the rightmost
character of the string. To reduce the large number of
comparisons, two heuristics are triggered on a
mismatch. The bad character heuristic shifts the
search string to align the mismatching character with
the rightmost position at which the mismatching
character appears in the search string. If the mismatch
occurs in the middle of the search string, then there is
suffix that matches. The good suffix heuristic shifts
the search string to the next occurrence of the suffix
in the string. Fisk and Varghese suggested a set-wise
Boyer-Moore-Horspoolalgorithm specifically for
intrusion detection [12]. It extends BM to match
multiple strings at the same time by applying the
single pattern algorithm to the input for each search
pattern. Obviously this algorithm does not scale well
to larger string sets.

On the other hand, Aho-Corasick (AC) [2] is a
multi-string matching algorithm, meaning it matches
the input against multiple strings at the same time.
Multi-string matching algorithms generally preprocess
the set of strings, and then search all of them together
over the input text. AC is more suitable for hardware
implementation because it has a deterministic
execution time per packet. Tuck et al. [13] examined
the worst-case performance of string matching
algorithms suitable for hardware implementation.
They showed that AC has higher throughput than the
other multiple string matching algorithms and is able
to match strings in worst-case time linear in the size
of the input. They concluded that their compressed
version of AC is the best choice for hardware
implementation of string matching for IDS.

 We use a different method to store the AC

database in an SRAM that achieves a higher
throughput than Tuck’s implementation while having
a similar memory requirement. It works by building a
tree based state machine from the set of strings to be
matched as follows. Starting with a default no match
state as the root node, each character to be matched
adds a node to the machine. Failure links that point to
the longest partial match state are added. To find

matches, the input is processed one byte at a time and
the state machine is traversed until a matching state is
reached. Fig. 2 shows a state machine constructed
from the following strings {hers, she, the, there}. The
dashed lines show the failure links, however the
failure links from all states to the idle state are not
shown. This gives an idea of the complexity of the
FSM for a simple set of strings.

There have been several attempts to accelerate

IDS recently, most of the implementations used
regular expressions. Regular expressions are
generated for every string in the rule set and a
Nondeterministic/ Deterministic Finite Automata
(N/DFA) that examines the input one byte at a time is
implemented. FAs are complex, hard to implement,
have to be rebuilt every time a string is added and
result in designs with a modest throughput. Sidhu and
Prasanna mapped an NFA into an FPGA [5]. Carver
et al. wrote a regular expression generator in JHDL
that extracts strings from the Snort database, generates
regular expressions and a netlist for a Xilinx FPGA
[6].

Other architectures used discrete comparators to

exploit parallelism and achieve higher throughput.
The disadvantage of this approach is the large area
required. Cho et al., for example, used four parallel
comparators per string [10], and Sourdis et al. used
pipelining as well as discrete comparators to double
the throughput [7]. Several implementations [8, 11]
have used CAMs and DCAMs along with
comparators to reduce the area and achieve similar
throughput to the discrete comparators
implementations. The drawback is the high cost and
the high power requirement of CAMs.

Recently, Dharmapurikar et al. [9] used bloom

filters to perform string matching. The strings are
compressed by calculating multiple hash function
over each string. The compressed set of strings is
stored into a small memory which is then queried to
find out whether a given string belongs to the
compressed set. If a string is found to be a member of
a bloom filter, it is declared as a possible match and a
hash table or regular matching algorithm is needed to
verify the membership. Bloom filters use less
memory, are easy to reprogram and achieve a higher
throughput than DFA implementations.

Tuck et al. [13] stored the high level nodes including
the pointers to the next and failure states in the RAM.
Because of that a huge memory of about 53MB was
needed to store the Snort rules set. They used the
analogy between IP forwarding and string matching to
apply bit-mapping and path compression to the AC
tree, reducing its size to 2.8MB and 1.1MB,
respectively. Our approach stores the state tables in
the RAM and uses a minimal logic to traverse the
tables and find a match. The state tables are around
3MB in size without the use of any compression
techniques.

III. ACCELERATOR ARCHITECTURE

The accelerator is a part of the configurable network
processor architecture shown in Fig. 3. It consists of a
2-wide multiple issue VLIW processor with hardware
support for eight hyper threads. The memory system
consists of multi-port RAM and a high speed DMA. A
number of configurable accelerators are used to speed
up specific networking tasks such as IP forwarding,
quality of service and string matching for intrusion
detection.

The IDS is composed of two components; a
software that runs on the VLIW core and a hardware
string matching accelerator. The software extracts the
strings from the Snort database, creates the FSM tree
and generates the state tables. The hardware is shown
in Fig. 4. It implements a Mealy FSM and consists of
a RAM to store the state tables, a register to hold the
current state, and control logic to access the RAM and
find a match.

Incoming packets need to be matched only against
a subset of rules that match the packet header in the
Snort database. To avoid creating one large
complicated FSM for all of the strings in the database,
the software performs a simple rule classification
resulting in a smaller FSM or state table for every
class. Rules are classified based on the header fields,
mainly the protocol and port numbers, into classes
such as ICMP, FTP, SMTP, Oracle, Web-CGI…etc.
This makes the software faster, reduces the RAM size
and exploits parallelism between packets to increase
the throughput.

Fig. 2. Finite state machine diagram

Fig. 3. Configurable network processor architecture

Fig. 4. String matching accelerator

idle he h h e r s hersher

h
rs

sh h she e there s s

t e

th h the e rt ther

Accelerator 0 to RAM IDS
2 Issue VLIW

OpenRISC
core with

Accelerator 1 IP
Forwarding DMA

•
•
•

Fine Grain
Multithreading
and Extended

ISA
Block Ops Accelerator N QoS

MemSrc MemDest Opcode Parameters

packet_in

reset

RAM
Next State

R/W
State

Register
write data

 Control
 Logic

8
/

packet_in
Address

state
Match ID match ID

 initial state

Table 1. State table

 Input Character
 e h s t r
- /(idle) -,0 ,0 ,0 t,0 h -,0 s
h he,0 h,0 -,0 s,0 t,0
he he-,0 h,0 r,0 s,0 t,0
her -,0 h,0 -,0 hers,1 t,0
hers s-,0 h,0 -,0 s,0 t,0
s -,0 sh,0 -,0 s,0 t,0
sh she,2 h,0 -,0 s,0 t,0
she he-,0 h,0 r,0 s,0 t,0
t -,0 th,0 -,0 s,0 t,0
th the,3 h,0 -,0 s,0 t,0
the the-,0 h,0 r,0 s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

s,0 t,0
ther ther he

r,0

	Introduction
	Related Work
	Accelerator architecture
	Results
	Conclusions and future work

