
1

A configurable Classification Engine for
Polymorphous Chip Architecture

Meeta Yadav, Patrick Hamilton, Rick Sears, Yannis Viniotis,
Thomas M Conte, Paul D Franzon

Department of Electrical and Computer Engineering
North Carolina State University, Raleigh, NC 27695

{myadav, phamilt, rnsears, candice, conte, paulf}@ncsu.edu

Abstract

     The ever-increasing demands for bandwidth
requirement, faster IP forwarding, efficient and effective
firewall and flexible differentiated services has resulted
in the evolution of sophisticated Network Processor
Units (NPUs). We describe a novel approach to
implement a pipelined, configurable IPv6 and IPv4 co-
processor for a Network Processor Unit. The co-
processor is capable of providing Forwarding, Firewall
and Differentiated Services. We use trie based
algorithmic approach for the implementation of the
design and extend it by using a morphable data path.
The pipelined architecture provides significant
improvement in the lookups and updates. The SRAM
contains preprocessed IP addresses for forwarding and
rules for Diffserv and Firewall engines. Our design
scales well with the number entries. The SRAM with
preprocessed rules is coupled to the engine with a bus
and results in a throughput of 28 Million look up per
second for an ASIC implementation and an update time
of 8ms, this results in an update rate of 125 entries per
second.

1. Introduction

The increase in the feature requirements of the Network
Processor Unit has brought upon the need for
sophistication in co-processor hardware. The basic
classification functions are

1) Forwarding,
2) Differentiated services, and
3) Firewall.

We propose a pipelined configurable co-processor
capable of performing firewall, diffserv and forwarding
for IPv4 and IPv6. The engine provides faster lookup,
faster updates and memory compaction. The engine

scales with the number of IP addresses, firewall rules
and diffserv rules. The basic goals of our design are

1) To perform fast next hop address lookup and
packet classification based on an incoming
packet,

2) For the design to be morphable by software,
3) To allow for faster updates, and
4 )  To have memory optimizations with

configurable boundaries.

In this paper we use an algorithmic approach to IP
forwarding, originally developed by Mehotra et al. [8],
we extend it by using a morphable data path, to also
provide high performance Diffserv and firewall. We show
how this algorithmic approach can achieve a performance
of over 28 million lookups per second for these tasks.
We also address the critical table build up problem,
outlining a solution that can sustain 125 upates per
second, and takes less than 8 ms to complete updates.
The solution described herein outperforms CAM based
solutions in terms of power consumption, area, and cost
while remaining competitive in terms of throughput and
update times.

    Packet forwarding and classification are memory and
computation intensive tasks. In our design we propose a
strategy for optimizing IP address and rule storage by
preprocessing the entries to reduce the best-case
complexity for rule lookup. We employ the trie based
scheme that enables SRAM compaction. The design’s
pipelining enables faster lookups and increased
throughput and the memory and stage design allow for
faster updating

    The rest of the paper is organized into the following
five sections. In Section 2 we discuss some of the related
work and motivation. Section 3 describes the algorithms
used.  Section 4 outlines our design and hardware
implementation In section 5 we present our results for
area and speed for an ASIC implementation and include
memory sizes. We conclude in Section 6.



2

2. Related Work

Various designs for fast classification engines exist today
whose underlying architecture is based on CAM or trie
data structures to partition the routing/rule tables.  

Girija et al [9] proposed a CAM based designs. CAM
engines, despite their increased power requirements, cost
and board area are used in several coprocessor design.
CAMs are inefficient in representing filters with port
ranges. There are several other algorithmic alternatives
that, either consume more memory, or have increased
memory accesses or suffer from scalability issues.

Existing trie-based schemes include direct and indirect
lookups. These schemes require large amounts of memory
to store the forwarding tables. The number of lookups is
small (1–2) for these schemes however they do not scale
well with number of entries. Binary tries, store data fairly
efficiently. However, they require a large number of
memory accesses compared to the direct or indirect
lookup schemes.  Variations of the basic binary trie such
as Patricia [2] and LC tries [3] improve performance to
some extent, but the average number of memory accesses
is still fairly large.

Basu et al [4] use pipelined Forwarding engines with fast
incremental updates that balance memory utilization
across multiple pipeline stages and minimize disruption
to the forwarding process caused by route updates.  This
system however suffers from scalability issues, as the
memory requirements per stage make the implementation
of an on-chip memory difficult.  For a million entries in
the forwarding table their scheme has memory increased
by a factor of 5 over our proposed design. Their design
also supports only IPv4 and also lacks the configurability
feature which is key in configuring the memories and
altering the boundaries for better trie distribution.

Sawhney [13], in his thesis focuses on a forwarding
engine for a million entries IPv6 routing tables.  Memory
requirements are analyzed for a trie-based scheme and a
binary search scheme for IP address lookup.   The
hardware described however is not pipelined and does not
support IPv6

3. Algorithm

Mehrotra et al [8] propose an algorithm that compacts the
trie data structure to easily fit it on a on-chip SRAM. The
row of the DRAM is calculated by the SRAM and the
next hop address is read from the DRAM. This work is
the basis for our design. We alter the memory to allow
faster updates and pipeline the design to handle faster
lookups as well as support for IPv6.

3.1 Tries

The SRAM and DRAM databases are built from the
conventional multiway trie structure. The SRAM
database contains information that represents the topology
of the trie, while the DRAM contains the next-hop
addresses corresponding to the leaves of the trie. In
addition to the SRAM and DRAM databases, an array
(Level) is also maintained in the SRAM. The route
lookup is done in two stages. In the first stage the
SRAM is used to traverse to the longest matching leaf
node in the trie, while in the second stage the DRAM is
read to get the next-hop address.

3.1.1 Trie Buildup

The data structure to be stored in the SRAM and DRAM
are built from the corresponding multiway trie. Figure 1
below shows a 4 way trie.

Figure 1. Sample four way trie and its bit pattern

We describe the implementation using a 16-way trie,
although any degree of trie can be built. The trie is built
as follows:
Step 1: Read each entry from the routing table and store
it in a list. Sort the list in ascending order. For prefixes
of differing lengths where one prefix forms the beginning
of the other, the prefix with fewer prefix character is
considered to be shorter For example, 10* is considered
smaller than 100*. This ensures that while building the
trie, parent nodes are processed before child nodes.

Step 2: Create the root node of the trie and initialize the
child node pointers to NULL.

Step 3: Read each entry from the list and expand if
necessary to complete the trie (to make sure that every
internal node has X children, where X is the trie degree).
Add appropriate nodes to the trie along with their next-
hop addresses.



3

Step 4: Once the trie is built, construct the SRAM and
DRAM data structures and the array Level via a breadth-
first traversal of the trie. The SRAM is built by writing a
1 for every internal node and a 0 for leaf nodes, as shown
in Figure 1. When constructing the SRAM data, we
assume the existence of the first “1” which represents the
root node and hence it does not need to be stored. The
DRAM is built by writing an entry for every node in the
trie in a breadth-first order.
The Trie depth is given by the formula.

Trie depth = No. of Address bits/log2X

where X - is the degree of the trie.

Trie depth is also the number of lookups required during
insertion of an entry into the trie in the worst case. Since
building the trie requires inserting N entries, where N is
the total number of entries in the routing table, the total
number of memory lookups while building the trie is

Memory Lookups = N * D

N - total number of entries in the routing table.
D - is the depth of the trie.

3.1.3 SRAM Compaction

Mehrotra’s [8] trie-based approach is a novel method to
compress the forwarding table information by reducing
the trie path-information. The required SRAM is small
enough (about 35KB for a routing database 30,000
entries) to easily fit on a chip. This is significantly
important especially when moving to IPv6 where larger
routing tables or multiple tables for different hierarchies
are used. The data for our case, using this scheme is
compacted to approximately 2 bytes for every entry in the
routing table (for a 16-way trie constructed with a million
entries). Also, the overall memory consumption (SRAM
and DRAM) using this scheme is almost half that
required in conventional implementations.

The amount of compaction achieved is much higher than
other existing schemes, making a  hardware
implementation feasible. The compacted information can
be stored in an on-chip SRAM and the final next-hop
addresses are stored in an off-chip DRAM. To perform a
route lookup, trie traversal is done in the SRAM and a
final DRAM access is required to determine the next hop
address.

3.2 Array of Tries

  The Diffserv and Firewall engines are built based on an
Array of Tries.  To start constructing this array the IP

address field (source/destination) is utilized since it
guarantees enough uniqueness.

Figure 2: Array of Tries.

The first trie is built on the source IP address and the
second corresponding trie is built for destination IP
addresses that share this source IP address.  Based on
information from the current firewall and Diffserv rule
sets we infer that there can be packets originating from a
single source to multiple destinations. Thus the search for
the destination address is narrowed down. The result of
traversing the destination trie generates pointers to a
memory populated with the remaining fields, where a
direct comparison can be made to determine the action.

3.3 Range lookups

Port number ranges and IP address ranges are a common
occurrence in rule sets. Srinivasan et al [10] propose a
simple mechanism of converting ranges to prefixes. The
ranges are thus pre-processed to prefixes and are translated
into part of the tries. Gupta et al [5] further define that a
range of width W can be represented by at the most 2W-
2 prefixes.

4. Design and Implementation

    IP address and rule information can be maintained as a
trie for fast address lookup and search to determine
membership of the incoming packet. We use the trie
approach for IP forwarding and an Array of tries for
Differentiated services and Firewall.

Some of the important design decisions for a Trie are
    1) The number of entries in the trie,
    2) The IP version, and
    3) The SRAM compaction.

    The design has four stages each of which pipelined
internally. The memory for each of these stages is
partitioned based on the address spaces and each partition
is further divided based on the levels they comprise of.



4

4.1 Block Diagram

We discuss the block architectures of the forwarding
engine, firewall engine and differentiated services engine
in this section.

4.1.1 Pipeline stage.

The forwarding engine consists of four stages. The stages
are split on the basis of levels of the Trie. For our
implementation, we chose the order of the trie to be 16
since the IPv4 address is 32 bits long the depth of the trie
is 8. Similarly the depth of 128 bit long IPv6 address is
32. In Figure 3 below we show the different stages
connected together.

Figure 3: Pipeline Stages.

Figure 4 below shows the internal blocks of a single
pipeline.

Figure 4 : Logic Blocks

The  four basic building blocks of a single pipeline are:
1) SRAM Access,
2) Mask Generation,
3) Sum of 1’s, and
4) Final state logic.

Memory for Stage 1 consists of the trie from level 0-7.
Since IPv4 consists of only 8 levels, the lookup or
classification for IPv4 ends in Stage 1 and does not
traverse through the rest of the stages. Stage 2 consists of
the trie from levels 8-15, Stage 3 consists of trie from
level 16-23 and Stage 4 consists of trie from level 24-31.
Typically IPv6 prefixes are 64 bits wide hence the output
can be obtained by traversing through stages 1 and 2. We
do not maintain a constant look up time hence the next
address is obtained when the trie traversal ends.

Each pipeline cycles through a stage 8 times to traverse
the 8 levels of the trie. The pipelines have been designed
to avoid memory contention.

Figure 5 below depicts the pipeline structure within each
stage. Incoming packets are fed into a stage at the rate of
one packet every 9 cycles.

Figure 5: Forwarding Engine stage diagram

Figure 6 shows the components external to the lookup
engine.  Each stage has its dedicated memory that is
populated with corresponding trie data.

Figure 6 : Stage Pipeline with memories

When a packet is received at stage 1 the trie from level 0-
7 are traversed based on their source IP address. If the
prefix to be matched is longer than 32 bytes then the
packet is passed to the next stage. For an IPv4 packet
stage 1 points to the DRAM to look up the next hop
address but for a firewall and Diffserv it forwards the
packet to traverse the tries of the destination addresses,



5

the result of which directs the packet to the corresponding
fields in the memory that need to be compared.  This is
achieved by creating filters in software.

The filter could also be created based on the destination
IP addresses, which in turn point to a subset of source IP
addresses. The uniqueness of the IP addresses gives the
advantage of smaller search space. There is no substantial
degradation in performance seen in the event such
uniqueness does not exist.

4.1.2 Memory Structure for Forwarding Engine.

The memory structure as depicted in Figure 7 is one of
the driving forces in the efficiency of the design. The
address space of the IP addresses are split based on the
first octet of the IP address; the different ranges are then
created for the IP addresses. This feature in the design is
configured by software. The memory is further partitioned
into different levels. This enables different stages to
access the memory without memory contention. In the
event of an update a new trie is constructed in software
and loaded onto a spare memory for swapping.  Each
address space occupies typically 288 KB. Software
prescribes the number of address spaces and their
boundaries.

4.1.3 Memory Structure for Firewalling and Diffserv
engine

The memory structure for the Firewalling and Diffserv is
similar to the Forwarding engine but contains additional
memories for secondary trie and multiple fields of the
Differentiated services rules.

Level 24-31Level 16-23Level 8-15

Address Space 1Address Space 1Address Space 1Address Space 1 Address Space 1Address Space 1Address Space 1Address Space 1

Address Space 2Address Space 2Address Space 2Address Space 2 Address Space 2Address Space 2Address Space 2Address Space 2

Address Space 3Address Space 3Address Space 3Address Space 3 Address Space 3Address Space 3Address Space 3Address Space 3

Address Space 4Address Space 4Address Space 4Address Space 4 Address Space 4Address Space 4Address Space 4Address Space 4

Address Space 5Address Space 5Address Space 5Address Space 5 Address Space 5Address Space 5Address Space 5Address Space 5

Address Space 6Address Space 6Address Space 6Address Space 6 Address Space 6Address Space 6Address Space 6Address Space 6

Address Space 7Address Space 7Address Space 7Address Space 7 Address Space 7Address Space 7Address Space 7Address Space 7

Address Space 8Address Space 8Address Space 8Address Space 8 Address Space 8Address Space 8Address Space 8Address Space 8

Level 0 -7

Figure 7: Memory Structure for the different stages.

The memories are separated based on the protocol field
and then based on the source or the destination IP
addresses. Hence the memories are indexed using the
Protocol field and then use the source and destination
addresses. We assume the Differentiated Services to be
provided by the ISPs on the basis of rules, which would
classify packets based on the following fields

1) Protocols,
2) Ports (including ranges),
3) Source IP address (including ranges),
4) Destination IP addresses (including ranges),
5) type of Service field,
6) DSCP value and
7) Flags (e.g. STN, FIN etc.)

5. Results
5.1 Performance

    We present our performance results for an ASIC based
implementation. For the ASIC implementation the
design was synthesized using the Virginia Tech 0.25um
library. The timing analyses were done with a clock skew
of 300ps. The synthesis provides a cycle time of 2 ns for
the design with a total cell area of 4.8 sq. mm. It takes
typically 32 cycles to process IPv4 packets and 64 cycles
to process IPv6 packet (with typical prefix length of 64
bits). We achieve a throughput of 28 Million lookups per
second.

5.2  Memory Requirements

The required SRAM is small enough to easily fit on a
chip.  The data in our case is compacted to approximately
2 bytes per entry as per the formula in [11] for a million
entry routing table.  We calculated the maximum SRAM
requirement and the expected SRAM requirement for the
forwarding engine.  The maximum SRAM requirement
arise from extreme cases that are not observed in present
day routing tables. It is further observed that the expected
SRAM requirement is less than that required for the
actual routing tables. Therefore we use a scaling factor to
allocate sufficient SRAM for the desired routing table
size.  

The theorem explained in [11] shows that the expected
SRAM memory (bits/entry) for n random uniformly
distributed routing table entries is given by:

E(Mem(bits/entry)) = M/ln(M),

where M is the degree of the trie.

In our case for a 16 degree trie the memory requirements
(using a scaling factor of 3) are as follows:

SRAM = 6Mbit * 3 = 18Mbits

Assuming a byte to store the port numbers, the memory
requirement for the DRAM would be:



6

DRAM = 18Mbit *8 = 144Mbits

The four memories (M0-M3) as explained in section
4.1.2, are split across the 4 stages and serve separate
levels.  From the prefix distribution of IP addresses
described in [12], it is observed that the 24-bit prefixes
(Level 6) are most dominant. For IPv6 packets the 64-bit
prefixes are found to be the most dominant.  Based on
this information the memories M0-M3 have been
partitioned.

For a DiffServ and Firewall engine the typical memory
requirements are likely to be less than the above since the
number of entries (rules) are less. The number of rules for
a DiffServ and Firewall are typically 20,000 and 10,000
respectively hence the trie memories for Diffserv is
approximately 90 KB and for Firewall it is 45 KB.

6. Conclusion

Our design achieves a throughput of 28 Million lookups
per second. We parallelized the design by creating deep
pipelines. SRAM compaction results in reduced memory
requirements as compared to other designs. The area for
our design is 4.8 sq mm. in a 0.25um technology.

The functionality of forwarding engines has now grown
to encompass multi-field classifications. There is a need
for a system that can efficiently perform the functions of
Firewall Differentiated Services and Forwarding. These
engines should also not suffer from constraints such as
excessive memory requirements and slow updates. The
design we propose uses SRAM compaction with a
memory of 2.25 MB for typical cases and performs
updates in 8 ms. The pipeline makes the design faster and
and increases the throughput. We show that with our
algorithmic approach we can achieve a performance of
over 28 million lookups per second for these tasks.  We
also address the critical table build up problem, outlining
a solution that can sustain 125 updates per second, update
takes less than 8 ms to complete.

8. Acknowledgement

    The authors would like to acknowledge the
contributions of Dr. Pronita Mehrotra and Ishdeep
Sawhney.

9. References

[1]  P. Gupta, S. Lin, and N. McKeown, “Routing
Lookups in Hardware at Memory Access Speeds,”
Proc. IEEE INFOCOM ’98, San Francisco, CA, 1998,
pp. 1382–91.

[2] K. Sklower, “A Tree-Based Routing Table for
Berkeley Unix,” Tech. rep., UC Berkeley.

[3]  S. Nilsson and G. Karlsson, “IP-Address Lookup
Using LC-Tries,” IEEE JSAC, vol. 17, June 1999,
pp. 1083–92.

[4]  Anindya Basu, Girija Narlikar, "Fast Incremental
Updates for Pipelined Forwarding Engines",
INFOCOM 2003

[ 5 ]  Gupta, McKeown. “Alogrithms for Packet
classification”. Computer systems Laboratory,
Stanford.

[6] J. Xu and al., “A novel cache architecture to support
layer-four packet classification at memory access
speeds,” in Proc. of Infocom, mar. 1999.

[7] Florin Baboescu, Sumeet Singh, George Varghese,
"Packet Classification for Core Routers: Is there an
alternative to CAMs?",INFOCOM 2003

[ 8 ]  P. Mehortra, P. Franzon, Novel Hardware
Implementation for Fast Address Lookups, 2002
Workshop on High Performance Switching and
Routing

[ 9 ]  Girija Narlikar, Anindya Basu, Francis Zane,
"CoolCAMs: Power-Efficient TCAMs for
Forwarding Engines", INFOCOM 2003.

[10]  V. Srinivasan, G.Varghese, S.Suri, M.Waldvogel.
“Fast and Scalable Layer four Switching”.
SIGCOMM’ 98 vancouver.

[11] Pronita Mehrotra, “Memory Intensive Architectures
for DSP and Data Communication”, Ph.D
Dissertation, NCSU, 2002

[12]  Ruiz-Sanchez, M.A.; Biersack, E.W.; Dabbous, W.,
Survey and taxonomy of IP address lookup
algorithms, IEEE Network April 2001

[13]   SAWHNEY, ISHDEEP SINGH, Forwarding Engine
for IPv6, Masters Thesis, North Carolina State
University.


