Neuromorphic Computing with Resistive Synaptic Arrays: Devices, Circuits and Systems

Yu (Kevin) Cao, Shimeng Yu, Jae-sun Seo

School of ECEE, Arizona State University

Outline

- Learning On-a-chip:
 Synaptic Devices and the Crosspoint Array
- Non-ideal Device Effects on Learning Accuracy
- Peripheral Circuits and Parallel Operation
- A System-level Benchmark Simulator
- Summary and Discussion

From Data to Information

Learning On-a-chip

 Deep learning in the cloud: expensive computation, huge training data, low energy efficiency, high precision

- Edge computing needs novel hardware / algorithms
 - Local to the sensor, real-time, reliable, low-power
 - On-line, personalized learning with continuous data

Acceleration Need

 10³ – 10⁵ speedup required to achieve real-time training of HD images at 30 frames/second

GPU	FPGA	1024x256 Synapses 256 Neurons	Beyond CMOS
10 – 30 X	10 – 50 X	10 ² – 10 ³ X	>10 ³ X

Device beyond CMOS: RRAM to emulate the synapse

Resistive Crosspoint Array

A biomimetic solution: RRAM for synapse, crosspoint for dense interconnection; not necessarily spiking neurons

Sparse Coding

Emergence of simple-cell receptive field properties by learning a sparse code for natural images

Bruno A. Olshausen* & David J. Field

Department of Psychology, Uris Hall, Cornell University, Ithaca, New York 14853, USA 111日本が必要が

LETTERS TO NATURE

$$\min_{D,Z} \frac{1}{n} \sum_{i=1}^{n} \left(\frac{1}{2} \parallel D \cdot Z_i - x_i \parallel^2 + \lambda |Z_i|_1 \right)$$

Reconstruction Sparseness Error

- X: input vector
- Z: feature vector (output)
- **D**: dictionary (weight matrix)

[D. H. O'Connor et al., Neuron 2010; B. A. Olshausen, D. J. Field, Nature 1996]

- High power efficiency
- No backward propagation
- Scalable to multi-layers

Analog Memory and Computing

- All cells are DC connected, no sneak path for read
- The value of Z, X (or r) represented by the number of voltage pulses; D by the RRAM conductance

Input Neuron (X or r)

Task	Operations
D·Z	$I_{r,i} = \sum_{i} G_{ij} \cdot V_{Z,j}$
$D^T \cdot r$	$I_{Z,j} = \sum_{j} G_{ij} \cdot V_{r,ij}$
<i>D</i> update	$\Delta G_{ij} = \eta \cdot r \cdot Z$

Realistic Device Properties

- Non-zero off-state conductance; limited levels / precision
- Device variations; nonlinearity in weight update
- Experiment with unsupervised sparse coding + MNIST to study their impact on learning accuracy

Non-zero Off-state and Precision

- Solution: spatial redundancy to solve non-zero off-state
- Fixed-point computing

 - On/off ratio needs to be > 25

Ζ

INPUT

Device Variations

- Weight update variation: device-to-device and cycle-to-cycle
 - Device nonlinearity has moderate impact on the accuracy
- Weight read noise

Impact on the Accuracy

- Impact of weight update variation: moderate
- Impact of weight read noise: significant
- Solution: multiple cells to minimize the variation

Interconnect Resistance

- Wire resistance is in series with RRAM resistance
 - RC delay is not an issue
- Solution: scaling up the wire

Neuron Circuits: Parallel Read

A current-to-digital converter, operating as the Integrate-and-Fire neuron model

Neuron Circuits: Parallel Write

Write RRAM through the spiking rate between input (X or r) and output (Z) neurons

 $\Delta G_{ij} \propto pulse width = Write Time \cdot Firing Rate = \eta \cdot Z \cdot r$

- Z value for the time window to write
- r value for the pulse number (firing rate)

Parallel Operation: O(1)

- 16 -

Array Size

- Peripheral circuits consume significant area
- Solution: scaling up the array size; non-CMOS neurons

130nm 1T1R array

System Simulator for Benchmark

- Built on the template of CACTI and NVSim
- Metrics include area, latency, leakage power, dynamic power, etc. for a given array size, device type and node

Example: A 256 x 256 Array

Architecture (array size=256 ²)	Area	Read Latency	Read Energy	Write Latency	Write Energy	Leakage
SRAM Array (row-by-row)	39638.07 µm ²	393.38 ns	15.14 nJ	114.55 ns	1.9 nJ	3247.93 μW
1T1R Array (row-by-row)	5601.04 μm²	75.51 ns	1.84 nJ	10311.42 ns	15.22 nJ	11.17 μW
Cross-point Array (fully parallel)	6551.49 μm²	70.63 ns	1.68 nJ	160 ns	10.62 nJ	2.07 µW

Sparse Coding	SRAM	1T1R	Cross-point	Improvement
Update Z (200 Read)	78.7 µs	15.1 µs	14.1 µs	
Update D (1 Write)	115 ns	10.3 µs	160 ns	
Time for 1 Iteration	78.8 µs	25.4 µs	14.2 µs	5.5×

Technology Scaling

- Large array does not scale well due to wire width relaxation
- <u>Solution</u>: partition of large array into multiple small arrays with technology scaling

Future Needs

- <u>Synaptic Device</u>: variation control, read noise reduction, better endurance (habituation), more levels (>4-bit)
- <u>Circuits and Architecture</u>: larger array, peripheral device/circuits, physical design, multi-array architecture
- <u>Neuromorphic Algorithm</u>: brain-inspired algorithm for low precision, compact network, and high energy efficiency

