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Quite sparse (< 1bit/4F?)

Back-End-Or-the-Line-compatible

Non-Volatile Memory:
a fundamental “building block”
enabling a range of applications
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Quite sparse (< 1bit/4F?)

MIEC-based “access device”

+NVM: a fundamental,
BEOL-compatible “building block”
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Problem (& opportunity): The access-time gap between memory & storage

Access tl(lr:]is) Yesteryear Today

1 | |CPU operations (1ns)
10 | Get data from L2 cache (<5ns) CI:U CPU

M_(60NnS) s 4
RAM RAM

Decreasing
cos$t

OFF-chip
memory

Memory/storage gap

ON-line

106 | Write to FLASH, random (1ms)

107 | Read or write to DISK (5ms)
10 i i
1010

Get data from TAPE (40s)
yoe TAPE TAPE

» Today, Solid-State Disks based on NAND Flash can offer fast ON-line storage,
and storage capacities are increasing as devices scale down to smaller dimensions...

...but while prices are dropping, the performance gap between memory and storage
remains significant, and the already-poor device endurance of Flash is getting worse.




Storage Class Memory (SCM)
DESIRED FEATURES

e Solid-state > no moving parts

 Nonvolatile - retains data on power-off

e Fast access speed - approaching DRAM
 High endurance - many program/erase cycles
e Low cost per bit = approaching hard disk

A new class of storage/ memory devices that
blurs the distinctions between ...

Memory (fast, expensive, volatile)

and
Storage (slow, cheap, nonvolatile)

(Wilcke, USENIX FAST tutorial, 2009)
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Need for an Access Device

Apply V

* Memory Element (PCM, RRAM etc.)

. §
| Access Device (Selector)

Sense |

Current ‘sneak path’ problem
Access device needed in series with memory element

o Cut off current ‘sneak paths’
that lead to incorrect sensing and wasted power
o Typically diodes used as access devices
e Could also use devices with highly non-linear I-V curves
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Requirements for an Access Device for 3D Crosspoint Memory

‘7 High ON-state current density
>10 MA/cm? for PCM / RRAM RESET

‘/ Low OFF-state leakage current
>107 ON/OFF ratio, and

wide low-leakage (< 100pA) voltage zone to
accommodate half-selected cells in large arrays

‘/ Back-End process compatible
<400C processing to allow 3D stacking

‘/ Bipolar operation
needed for optimum RRAM operation

P

\ e
\F PCM or RRAM

Access
Device

v variability?
v yield?

v' long-term leakage?
v turn-OFF speed?

v’ co-integration with NVM?
v turn-ON speed for write?
v endurance?

v" manufacturability?

v’ scalability?
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v turn-ON speed for read?

v' quantitative modeling?

v' array design (interplay between
NVM & selector characteristics)




Novel Mixed-Ionic-Electronic-Conduction (MIEC) Access Device

Strengths TUA 4 FrtH e . :: :=: T
e High enough ON currents for PCM — ﬁmrent

cycling of PCM has been demonstrated = |

10nA+...

° LOW enough OFF current f‘or Iarge arrays P I— ...................................... ;

5uA read currents

100pA ...
¢ \oltage margins > 1.5V with tight »
distributions - sufficient for large arrays ophy | 1)
* CMP process demonstrated SR - IR votage [V
. . =1 0.8 06 -04 0.2 0 0.2 04 06 0.8 1
¢ 512kBit arrays demonstrated w/ 100% yield |
e Scalable to <30nm CD, <12nm thickness 1250.0001”%%" 0.01 %1 05 %7 90 99° 999979%%gg000
e Capable of 15ns write, 50ns read 1uA -
e Highly stable in un-/half-select conditions Current
300nA
Weaknesses
e Maximum voltage across companion 100nA
NVM during switching must be low
(1-2V) = influences half-select condition SR
and thus achievable array size 1on, Voltage [v]
- -1.5 -1 -0.5 0 0.5 1 1.5
e Endurance during NVM '

. . 9 v d d Gopalakrishnan, VLSI 2010 Shenoy, Semi. Sci. Tech. 29/104005 (2014)
programming is strongly dependent ON  gpengy, VLSI 2011 Burr, JVST-B 32/040802 (2014)
programming current Burr, VLSI 2012 Narayanan, DRC & IEDM 2014,

\élrwa\';'L,SIIEE(')"bZOlZ J-EDS 3/423 (2015), IEEE J.ESTC&S (2016)
) rechar arrav research @I G- Hall e Padilla, IEEE-TED 62/963 (2015)
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DRC 2014 — Crossbar array design using SPICE modeling

P'arl'halt',-r (WL) Selected Cells Selected Cell

a),__ Total tfm'tage to Switch NVM

(N-1) Unselect Rows (Wordlines)
Partially (BL) Selected Cells

(M-1) Unselect Columns (Bitlines)

[y
(=)
=
(=]

L e Lo CTTs [Tt PETEPEes Seereern "'"'"I'"""'"!'""""l."""""l."""""J."""""'"""“"!"""“"
gnnnvngun-ilqnnv@vgwu\-qnwnu Ex . s g remfrins

; gt A) Efficient design point:
o T o nearly all injected power

- delivered to “selected” device(s)

y Size

B) Inefficient design point:
| L much more injected power,
15Kb........._...... = Approximate, C - .
|terat|ve model . i P ' WhICh IS mOStly d|SS|pated
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NVM Switching Voltage [v]

Maximum Arra




IEDM 2014 paper: compare access devices using SPICE

Circuit-Level Benchmarking of Access Devices for
Resistive Nonvolatile Memory Arrays

P. Narayanan, G. W. Burr, R. S. Shenoy, K. Virwani, and B. Kurdi
S0uA TN '
1 ———— ’\ Array Size - 1Mb I
GC) 4OUA ———— 2 , ............ I.; VLRS=2/3xVHRS
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« Below 1mW contours shown,
parallel writes are still a viable option...




Quite sparse (< 1bit/4F?)

MIEC+NVM: a fundamental,
BEOL-compatible “building block”
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Cognitive computing
Neuromorphic Devices and Architectures

systems that learn at scale, ]" - accelerate today’s machine learning
reason with purpose &

interact with humans naturaIIy. Machine Intelligence
« create flexible systems that learn continuously

“Deep” Neural

Networks Von Neumann
g OO ] Architecture
o \./O 01 Memory  Processor
O N\O QI
O/ 00
O =

from Oct 2, 2015 IBM whitepaper, “C ™20 niaon, and the future of knowing"

:MOEEEEEMEE  [BM + partner companies RDS NanoCrossbar workshop 016




Cognitive computing
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systems that learn at scale, :I"
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Machine Intelligence
« create flexible systems that learn continuously

THEME 3

The Invisible
Made Visible

Galileo looked through
his telescope and saw
our cosmos in an entirely
new way. We continue
this tradition with a new
generation of scientific
instruments designed

to make our invisible
world visible.

PROGRAM

Quantum

Neuromorphic Devices and Architectures
« accelerate today’s machine learning

PROJECTS

Macroscopes

What decisiona would you make with an instrument that allowed you to witnesa
the hidden connections behind complax physical and man-made systems?

Bioscopes
Microfkiidic technologies are snabling ultra-affordable, on-the-spot precision diagnostics.
How will this information change the way you manage your heaith?

Nanoscopes

‘Some of the world's |argest problemns are rooted in the nanoscaie. How do invisible
phenomens at the nancscale impact your business?

Hyperimager

Wihat if you could ses far beyond the visible spactrum, anywhers, any time?

MISSIONS

The World’s Most Advanced
Muiti-Qubit Quantum Computer

plore chailengi

The World’s Smallest and
Most Affordable Computer

The World’s Highest Bandwidth,
Lowest Latency Computer




“Deep Learning” on GPUs
1) Input data (images, [, Synaptic weight

raw speech data, etc.) ‘. @\
input to neural ”Et""orf o 2) classification results
O compared to labels
Bl e |
| ﬂ o 3) corrections
: “backpropagated”
) = — & all weights updated
5
O
Combine .
100-1000  @Q——>
input vectors T - All steps can be
into an : : 3 — excitation
input matrix ... multiply by current *, inFo next mapl?ed to o _
("mini-batch”) weight matrix, . hidden matrix multiplications
V ) _4 neuron_s
i | - can run very fast
X s on GPUs




Multiply-accumulate: in GPU matrix-mult, but then move data

GPU spends time
& energy
transferring

data to & from
its on-board
DRAM




Multiply-accumulate: NVM = compute w/ physics, at the data

XJ!3 =f(2 xiA wij)

NVM

Selector device .

Conductance
pairs

*
*
*
-
L4
*
‘e
L4

By reading all the o P
NVM devices along . | I| G VO

a column (or a row)

in parallel, we

perform the Y

multiply-accumulate @ 7
AT the data...

I=) GTvV

s T
I=2 GV




NVM-for-Machine-Learning

Selector device .

Like TrueNorth: compute AT the weight data Conductance ﬁ

pairs.....
Unlike TrueNorth: learning performed on-chip '

For TrueNorth, power is everything

For NVM-for-ML, need speed-up over GPUs

Research challenges

1) What do we really need from the NVM devices?

« Recap of our IEDM2014, IEEE-TED2015 work
> Need competitive ML performance

2) What are the potential benefits, in speed & power?
» Speed - Parallelism = Area-efficient circuits

»
»
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Published work on “what do we need from the NVM?”
[1] IEDM 2014

Experimental demonstration and tolerancing of a large-scale neural network
(165,000 synapses), using phase-change memory as the synaptic weight element
G.W.Burr, R.M. Shelby, C.di Nolfo. J. W.Jang*, R. S. Shenoy, P. Narayanan, K. Virwani. E. U. Giacometti, B. Kurdi. and H. Hwang?

- First large-scale mixed hardware-software demonstration + tolerancing
- ~82% accuracy on MNIST with 5000 examples

ET T TRANSACTIONS O [ ECTRON DEVICES, YOL. &2 N0 11, MOVEMIER 2015

Experimental Demonstration and Tolerancing of a

[2] InV|ted paper |n IEEE_TED (V62(11), 3498 (2015)) LargewSc.ale Neural Network (165000 Synapses)

Using Phase-Change Memory as the
Synaptic Weight Element

Geoffrey W. Burr, Sewior Member, IEEE, Robert M. Shelby, Severin Sidler, Carmelo di Nolfo, Junwoo Jang,

- Showed that high accuracy e e e e e e e e
(~94% w/ 5,000 examples, P ——
97-98% w/ 60,000 examples) T T o

omvlatile memary (NVM) 7 selector crom
obtuining u truining (generalization) accuracy e a2y
Using @ neural network mnulnlur mmdzd o the experimental

is possible — NVM just needs a linear m“*ﬂmmmw

a u
response of high dysamic runge i capsble of delivering the same

conductance response w/ small steps el e

Index Terms—Artificial newral networks, Machine learn-  seurons sctivaie ach other Smgh demse newocks ai progs naptic
ing, Mubilayer perceptrans, Noasolatile maemory, Phase. change.  weights, can be e sy dease croaber mrage of NVHS po e
memory.

demce puin.
L INTRODUCTION Work i0 date has ired the spike-ti depend
plasticity (STDP) slgorithm (1], [2 I mou\mcd b synnptic
D”QSL amays of noevelatile memory {NVM) and 5*“‘ measwrements in real bruns. However, experimental NVM
tor device pairs (Fig. 1} can imak ions have beea limited in size (<100 synapses),
st Vo Metrcsn - eosputing: 1], T2, kg sicy (2] o1

and fiew results hove reponed quantilative performance metrics
NVM devices as programmable (plastic) bipolar syNapses. ook as classification accuracy. Worse yet, it has been difficult

o i s R in be sure whether the relutively poor metrics reporied to
uscripl moeved May 5, moisal May 17, 3015, accepead e i = g

o n u c a n ce May 5 215 bae of pelication iy 1, 015 dui of cmen vemion Hae :'"St" b e 4o mativities or faeflickmcies 1. e

e moview of paper wis armmged by Edinr 5 1DF learning alzorithm (as it is curently implemented), or

J 5 s»d-.le if these results are truly reflective of problems introduced by

G oW G KM Seby S Sdc C 6 Mo PNy e
K Vi, st LN, Wil v DAL Mo Aty S o, PALIECHiDE 0 the VM clovicen: -

USA el pyberBun oo by Bus o e Unlike  STDP.  backpropagation s & widely used,

i pusnys@uibmone  will-studied  method  i8 treining  artificill  neoral

=, i - 8

networks  (NNs), offening benchmarkable  performance

iy o S mn’“m“‘m‘kJ i Moo ok M3 on dalasets such as_handwritien digits (MNIST) [3].

Tode Althiough proposed earfier, it ‘gnined grent pogularity in the

:n. Ecole Pol I 1 = 5 o ic

k] ﬂ:‘ﬂm;h{"uw de Laumzmnz, 1950 ‘.3|. 1 J!d with the adt\gn.t of graphics processor

o Tei, Sesa o CA 95084 USA {euit  UMits (GPUs), bockpropagation now dominates the NN field,

In this paper. we use backpropagution to train & relatively

e simple multilayer perceptron network (Fig. 2). During forward

Teparimese of Materiah &,m e g evelnation of this network. each layer's inputs (x;} drive tha
e mnd Fndm:.loy Poohazg w?!(.l Kur-u next layer's neurons through a weight wy; and o nonlinearity

was with IEM Research- ‘\\mldm. San Jose,
Leom

F() (Fig. 2} Sopervised learning occurs (Fig. 3) by then

Fobang y o

e ) - X T )

mu' ine at hitp: 7 C backpropagating the eror term d) io adjust each weight ey
Dagital Ohject Identifier 101 \U'le D, 2015, 43935 A three-layer petwork is L.Apnnh of accuracies, on

WIS € 1S L Pl e i pertid, bt rqumuaummmnnnm mquines [FEE pemmsmion

For miore mfnmmation.
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Published work on “what do we need from the NVM?”
[1] IEDM 2014

Experimental demonstration and tolerancing of a large-scale neural network
(165,000 synapses), using phase-change memory as the synaptic weight element
G.W.Burr, R.M. Shelby, C.di Nolfo. J. W.Jang*, R. S. Shenoy, P. Narayanan, K. Virwani. E. U. Giacometti, B. Kurdi. and H. Hwang?

- First large-scale mixed hardware-software demonstration + tolerancing
- ~82% accuracy on MNIST with 5000 examples

[2] Invited paper in IEEE-TED (v62(11), 3498 (2015).)

- Showed that high accuracy
(~94% w/ 5,000 examples,
97-98% w/ 60,000 examples)

is possible — NVM just needs a linear
conductance response w/ small steps

[3] Invited talk @IEDM 2015 (Neuromorphic Focus Session)

Large-scale neural networks implemented with non-volatile memory as the
synaptic weight element: comparative performance analysis (accuracy, speed, and power)

G. W.Burr, P.Narayanan. R. M. Shelby, S.Sidler, I. Boybat, C.di Nolfo, and Y.Leblebicif

- showed prospects for speedup (up to 25x) and lower power (100x to 3000x)




Summary of NVM-for-Machine-Learning

» NVM-based crossbar arrays CAN accelerate Machine Learning
compared to GPU-based training

- Multiply-accumulate performed AT the data
> Prospect for 25x speedup & 120-2850x lower power

» Need: competitive ML accuracy
v' experimental results: ~82% on “minor-league” MNIST using PCM

v “ideal” NVM w/ linear G-response of high dynamic range - sufficient!
- Our plan: better NVM + innovations to protect network from real NVM

> Need: area-efficient peripheral circuitry
v power benefits are quite significant
v but design must preserve speedup benefits
> Aggressive timing & minimal circuit sharing

» More rigorous power/speed analysis - based on real circuit designs
> Flexible, reconfigurable interconnectivity between arrays
> Need to also support convolutional neural networks

»
».
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IBM Research — multiple paths to faster ML training

Accelerate backpropagation training
(e.g., Deep-NN, Conv-NN, and LSTM)...

s~ Synaptic weight

Nt — Existing NVM

cell
(e.g., PCM, “"PCMQO")

* Available now

* Truly non-volatile

« Compact cell

* Nonlinear + asymmetric

..by performing multiply-accumulates on-chip

using analog resistive memory elements.

= ‘
=i
W

penp Unlt Unlt
Clrcults ceII

Perip. Perip.
Circuits| | Circuits

Penp Unit Unit Unit
Circuits cell cell cell

Perip. Unit - Unit
Circuits cell

I Unit
ceII

cell

cell —**=

Capacitors
(CMOS-RPU)

* Available now

 Leaky - need refresh?
« Larger cell

» Suitably linear

Tayfun Gokmen (IBM Yorktown)

= Seyoung Kim (IBM Yorktown)

Improved NVM

(Device-RPU)

* Yet to be developed
» Non-volatile
« Compact cell
« Linearity is key
(asymmetry can be dealt with)




“Machine Learning” vs. "Machine Intelligence”

“Brain-inspired” computing
(1940’s understanding of the brain)

“"Machine Learning”

solving a specific task on labeled data by
defining & optimizing an objective function

PRO:

» can follow gradient descent thru backpropagation
- convergence to “good” solutions

» mapping to matrix manipulation > GPUs!!

« great progress in ML thanks to competitions
« Many datasets created
* Focus on quantifying performance

CON

* We

=

re sure the brain doesn’t do backpropagation
« can only handle static, labelled data

« insistence on quantifying performance
may now be stifling innovation

“Brain-inspired” computing
(modern understanding of the brain)

“Machine Intelligence”

flexible systems that continuously learn from

unlabeled data, and that perform (motor)
actions, predict consequences of those

actions, and then plan ahead to reach goals

PRO:

« we're sure this is what the brain does

« MI should be able to handle
unlabelled & temporal data

« MI should enable continuous learning

CON:

» we don’t know (yet) how the brain guarantees
robust, stable convergence in learning

« we have to figure out how to appropriately
quantify “performance”




Smart Memory Roadmap
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PCM-based Smart Memory Concept

5x5-pixel patterns
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Smart Memory with
~1M neurons
~256M synapses

 Spike-Timing-Dependent-Plasticity (STDP) using Phase Change Memory

Chung Lam (clam@us.ibm.com)

= Sangbum Kim (sangbum.kim@us.ibm.com) {gisls




Input
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[~ Pre-synaptic
=  Axon Spike
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Axon STDP Gate
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2T1R PCM design for Spike-Timing-Dependent-Plasticity

Membrane Potential

BLread

Post-synaptic
STDP Feed
I Rl wwrita

T Output
Post-synaptic Dendrite Sp| keS

IEDM2015

NVM Néummorphic Core with 64k-cell (256-by-256) Phase Change Memory Synaptic Array with
On-Chip Neuron Circuits for Continuous In-Situ Learning

S. Kim. M. Ishii’. S. Lewis. T. Perri. M. BrightSky. W. Kim. R. Jordan. G. W. Burr”. N. Sosa. A. Ray. J.-P. Han. C. Miller. K. Hosokawa'. and C. Lam
IBM T. J. Watson Research Center. 1101 Kitchawan Rd.. Yorktown Heights, NY, 10598, USA

"IBM Tokyo Research Lab. Tokyo. Japan. “IBM Research—Almaden. San Jose. CA. USA.
Tel: +1(914)945-2530. Fax: +1(914)945-4256. email: SangBum. Kim({@us.ibm.com




nature
nanotechnology

ARTICLES

PUBLISHED ONLINE: 16 MAY 2016 | DOI: 10.1038/NNANO.2016.70

Stochastic phase-change neurons

Tomas Tuma™, Angeliki Pantazi’, Manuel Le Gallo'?, Abu Sebastian' and Evangelos Eleftheriou™

Spike event backpropagation
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Machine Intelligence based on sequences of
Sparse Distributed Representations

S T

; ..;.:a‘_- 5’?@;‘!&';%; | 7

OUTPUTS:

Predictions

Context

Stable Concepts (SDR)
Motor commands

A potential path to handling
temporal, unlabelled data

N Spatial-temporal data & - Maybe a path
- ~“ommee - streams of any kind to machine intelligence?
“ ., Requires HUGE fanout:
Context-Aware Learning many POTENTIAL synapses
winfriedwilcke@us.ibm.com (internally analog, externally binary)
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Von Neumann architecture: aspects we're likely to miss (a LOT)

1) Programmable CPU Memory OK, fin_e: let’s research
> adaptable devices to enable
energy-efficient
non-Von Neumann
architectures

2) Great co$t model Sell it to
LOTS of people
Design 1 piece for vastly
of hardware... different
purposes...

3) Modularity of design

« N
Specifications Specifications
<> <>
Requirements Requirements




Research needs for “"NanoCrossbars” (1/2)

] Access
1) NVM devices Device
« any flaws must be addressable by engineering (highly
» good SNR (resistance-range / variability) nonlinear or
. Iprog < 50uA, Vprog < 2.0V, transient switch) -
torog < 10USEC, tepq << lusec NVM
(long-term
* (neuro) _ _ digital
» When they fail - fail to OPEN (not SHORT) storage)

* Yield >90-95%

2) Access devices
* < 10nA half-select at (Vigta|-applied/2) = can ONLY be evaluated for NVM+AD pair!!

» extremely tight variability
(variability in nonlinear IV or holding voltage

2 uncertainty in Vaccess device at_Iread, Iwrite _
- loss of read SNR + requires device-overwrite—=> endurance-loss)

« When they fail - fail to OPEN (not SHORT)
—OR—- ~100% yield & high endurance




Research needs for “"NanoCrossbars” (2/2)

Access
3) Neuromorphic applications Device
- Accelerating backprop: non"(nh;g:"oyr
« NVM devices with LINEAR conductance transient switch) - Y
change, from G, to G, :NVM“'
* Area-efficient circuit design (long-term
« Methods to protect ANN from nonlinear NVM devices digital

storage)

« STDP-based NN: (e.g., spikes for learning not just communication)

« Killer app that requires learning-from-timing
* Architecture/global-algorithm that harnesses STDP-like local learning rule
for robust learning to support/enable above killer-app

« Machine Intelligence:
« Significant algorithm development needed - too early for crossbars!

Message: Device researchers who want to have an impact here MUST
also learn/know/advance the circuits/systems/algorithms module(s)
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