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Quite sparse (¿1bit/4F2)

Quite dense (À1bit/4F2)

Back-End-Of-the-Line-compatible
Non-Volatile Memory:

a fundamental “building block”

enabling a range of applications
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Quite sparse (¿1bit/4F2)

Quite dense (À1bit/4F2)

MIEC-based “access device”
+NVM: a fundamental,

BEOL-compatible “building block”

Standalone
S-class SCM
(Enhanced Flash)

Artificial
synapses
(Non-VN
Computing)

TEC

MIEC

BEC

Standalone M-class SCM
(Hybrid memory)

Embedded storage
(Automotive)

Embedded memory
(Low-power, mobile computing)

Computation-in-Memory
(Distributed computing)

Programmable e-fuses
(FPGAs, reconfigurable computing)PCM

RRAM
CBRAM
MRAM
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Problem (& opportunity): The access-time gap between memory & storage

• Today, Solid-State Disks based on NAND Flash can offer fast ON-line storage,
and storage capacities are increasing as devices scale down to smaller dimensions…

TAPE

DISK

FLASH
SSD

RAM

CPU

Today

TAPE

DISK

RAM

CPU

…but while prices are dropping, the performance gap between memory and storage
remains significant, and the already-poor device endurance of Flash is getting worse.

ON-chip
memory

OFF-chip
memory

ON-line
storage

OFF-line
storage

Decreasing
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Get data from DRAM/SCM (60ns)
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1 CPU operations (1ns)

Get data from L2 cache (<5ns)

Read or write to DISK (5ms)

Get data from TAPE (40s)

Access time...
(in ns)

Write to FLASH, random (1ms)

Read a FLASH device (20 us)

Memory/storage gap

Yesteryear

5



July 15, 2016Crossbar array research @IBM IBM Research – Almaden
G. W. Burr

IRDS NanoCrossbar workshop6

Storage Class Memory (SCM)

A new class of storage/memory devices that
blurs the distinctions between …

Memory (fast, expensive, volatile)
and

Storage (slow, cheap, nonvolatile)

• Solid-state  no moving parts

• Nonvolatile  retains data on power-off

• Fast access speed  approaching DRAM

• High endurance  many program/erase cycles

• Low cost per bit  approaching hard disk

(Wilcke, USENIX FAST tutorial, 2009)

DESIRED FEATURES



July 15, 2016Crossbar array research @IBM IBM Research – Almaden
G. W. Burr

IRDS NanoCrossbar workshop7

Need for an Access Device

Access device needed in series with memory element

• Cut off current ‘sneak paths’

that lead to incorrect sensing and wasted power

• Typically diodes used as access devices

• Could also use devices with highly non-linear I-V curves
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? High ON-state current density
>10 MA/cm2 for PCM / RRAM RESET

? Low OFF-state leakage current
>107 ON/OFF ratio, and

wide low-leakage (< 100pA) voltage zone to

accommodate half-selected cells in large arrays

? Back-End process compatible
<400C processing to allow 3D stacking

? Bipolar operation
needed for optimum RRAM operation

 High ON-state current density
>10 MA/cm2 for PCM / RRAM RESET

 Low OFF-state leakage current
>107 ON/OFF ratio, and

wide low-leakage (< 100pA) voltage zone to

accommodate half-selected cells in large arrays

 Back-End process compatible
<400C processing to allow 3D stacking

 Bipolar operation
needed for optimum RRAM operation

8

Requirements for an Access Device for 3D Crosspoint Memory

PCM or RRAM

Access
Device

 variability?
 yield?
 co-integration with NVM?
 turn-ON speed for write?
 endurance?
 manufacturability?
 scalability?

 long-term leakage?
 turn-OFF speed?
 turn-ON speed for read?

 quantitative modeling?
 array design (interplay between

NVM & selector characteristics)

.0.1.2
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Novel Mixed-Ionic-Electronic-Conduction (MIEC) Access Device
Strengths

•High enough ON currents for PCM –
cycling of PCM has been demonstrated

•Low enough OFF current for large arrays

•Very large (>>1e10) endurance for typical
5uA read currents

•Voltage margins > 1.5V with tight
distributions  sufficient for large arrays

•CMP process demonstrated

•512kBit arrays demonstrated w/ 100% yield

•Scalable to <30nm CD, <12nm thickness

•Capable of 15ns write, 50ns read

•Highly stable in un-/half-select conditions

Weaknesses
•Maximum voltage across companion
NVM during switching must be low
(1-2V)  influences half-select condition
and thus achievable array size

•Endurance during NVM
programming is strongly dependent on
programming current

Gopalakrishnan, VLSI 2010
Shenoy, VLSI 2011
Burr, VLSI 2012
Virwani, IEDM 2012
Burr, VLSI 2013

Shenoy, Semi. Sci. Tech. 29/104005 (2014)

Burr, JVST-B 32/040802 (2014)

Narayanan, DRC & IEDM 2014,
J-EDS 3/423 (2015), IEEE J.ESTC&S (2016)

Padilla, IEEE-TED 62/963 (2015).0.1



July 15, 2016Crossbar array research @IBM IBM Research – Almaden
G. W. Burr

IRDS NanoCrossbar workshop

A

B
A) Efficient design point:

nearly all injected power
delivered to “selected” device(s)

B) Inefficient design point:
much more injected power,
which is mostly dissipated
in “unselected” devices!!

10

DRC 2014 – Crossbar array design using SPICE modeling
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IEDM 2014 paper: compare access devices using SPICE
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• Below 1mW contours shown,
parallel writes are still a viable option…

.0.1
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Quite sparse (¿1bit/4F2)

Quite dense (À1bit/4F2)

MIEC+NVM: a fundamental,

BEOL-compatible “building block”

Standalone
S-class SCM
(Enhanced Flash)

Artificial
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(Non-VN
Computing)
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(Hybrid memory)

Embedded storage
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Embedded memory
(Low-power, mobile computing)
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from Oct 2, 2015 IBM whitepaper, “Computing, cognition, and the future of knowing" https://ibm.biz/BdHErb

ProcessorMemory

BUS

“Deep” Neural
Networks Von Neumann

Architecture

la
b

e
ls

Cognitive computing

13

systems that learn at scale,
reason with purpose &

interact with humans naturally. Machine Intelligence
• create flexible systems that learn continuously

Neuromorphic Devices and Architectures
• accelerate today’s machine learning

.0.1.2.3.4 IBM + partner companies
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from Oct 2, 2015 IBM whitepaper, “Computing, cognition, and the future of knowing" https://ibm.biz/BdHErb

ProcessorMemory

BUS

“Deep” Neural
Networks Von Neumann

Architecture

la
b

e
ls

Cognitive computing
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systems that learn at scale,
reason with purpose &

interact with humans naturally. Machine Intelligence
• create flexible systems that learn continuously

Neuromorphic Devices and Architectures
• accelerate today’s machine learning

.0.1.2.3.4 IBM + partner companies
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“Deep Learning” on GPUs
1) Input data (images,

raw speech data, etc.)

input to neural network 2) classification results
compared to labels

3) corrections
“backpropagated”
& all weights updated

Combine
100-1000

input vectors
into an

input matrix
(“mini-batch”)

£ =

 excitation
into next
hidden

neurons

… multiply by current
weight matrix,

All steps can be
mapped to
matrix multiplications

 can run very fast
on GPUs

.0.1
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in GPU matrix-mult, but then move data

GPU spends time
& energy
transferring
data to & from
its on-board
DRAM

£

16

x1

x2

x528
A

A

A

B

wij

S xi wij
A

xj
=f(S xi wij)

B A

Multiply-accumulate:

.0.1.2.3
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NVM  compute w/ physics, at the data

17

x1

x2

x528
A

A

A

B

wij

S xi wij
A

xj
=f(S xi wij)

B A

Multiply-accumulate:

N1

N2

Nn

pairs

M1
+ -

Conductance

Selector device
NVM

I=G+ V(t)

I=G- V(t)
By reading all the

NVM devices along
a column (or a row)

in parallel, we
perform the

multiply-accumulate
AT the data…

xi
wij

I= S G- V
I= S G+ V

.0.1.2.3
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NVM-for-Machine-Learning

N1

N2

Nn

pairs

M1
+ -

Conductance

Selector device
NVM

Like TrueNorth: compute AT the weight data

Unlike TrueNorth: learning performed on-chip

For TrueNorth, power is everything

For NVM-for-ML, need speed-up over GPUs

M2
+ -

.0.1.2

2) What are the potential benefits, in speed & power?

• Speed  Parallelism  Area-efficient circuits

Research challenges

1) What do we really need from the NVM devices?

• Recap of our IEDM2014, IEEE-TED2015 work

→ Need competitive ML performance

.3
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Conductance

# pulses

 Showed that high accuracy
(~94% w/ 5,000 examples,
97-98% w/ 60,000 examples)

is possible – NVM just needs a linear
conductance response w/ small steps

[2] Invited paper in IEEE-TED (v62(11), 3498 (2015).)

19

Published work on “what do we need from the NVM?”

 First large-scale mixed hardware-software demonstration + tolerancing
 ~82% accuracy on MNIST with 5000 examples

[1] IEDM 2014

.0.1.2
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 Showed that high accuracy
(~94% w/ 5,000 examples,
97-98% w/ 60,000 examples)

is possible – NVM just needs a linear
conductance response w/ small steps

[2] Invited paper in IEEE-TED (v62(11), 3498 (2015).)

20

Published work on “what do we need from the NVM?”

 First large-scale mixed hardware-software demonstration + tolerancing
 ~82% accuracy on MNIST with 5000 examples

[1] IEDM 2014

[3] Invited talk @IEDM 2015 (Neuromorphic Focus Session)

 showed prospects for speedup (up to 25x) and lower power (100x to 3000x)

.0.1.2



July 15, 2016Crossbar array research @IBM IBM Research – Almaden
G. W. Burr

IRDS NanoCrossbar workshop21

Summary of NVM-for-Machine-Learning
 NVM-based crossbar arrays CAN accelerate Machine Learning

compared to GPU-based training

→ Multiply-accumulate performed AT the data

→ Prospect for 25x speedup & 120-2850x lower power

 Need: competitive ML accuracy

 experimental results: ~82% on “minor-league” MNIST using PCM

 “ideal” NVM w/ linear G-response of high dynamic range  sufficient!

→ Our plan: better NVM + innovations to protect network from real NVM

 Need: area-efficient peripheral circuitry

 power benefits are quite significant

 but design must preserve speedup benefits

Aggressive timing & minimal circuit sharing

.0.1.2

 More rigorous power/speed analysis  based on real circuit designs

 Flexible, reconfigurable interconnectivity between arrays

 Need to also support convolutional neural networks

.3



July 15, 2016Crossbar array research @IBM IBM Research – Almaden
G. W. Burr

IRDS NanoCrossbar workshop22

Accelerate backpropagation training
(e.g., Deep-NN, Conv-NN, and LSTM)…

…by performing multiply-accumulates on-chip
using analog resistive memory elements.

Unit
cell

Unit
cell

Unit
cell

Unit
cell

Unit
cell

Unit
cell

Unit
cell

Unit
cell

Unit
cell

Unit
cell = Existing NVM

(e.g., PCM, “PCMO”)

• Available now
• Truly non-volatile
• Compact cell
• Nonlinear + asymmetric

Capacitors
(CMOS-RPU)

• Available now
• Leaky  need refresh?
• Larger cell
• Suitably linear

Improved NVM
(Device-RPU)

• Yet to be developed
• Non-volatile
• Compact cell
• Linearity is key

(asymmetry can be dealt with)

IBM Research – multiple paths to faster ML training

Tayfun Gokmen (IBM Yorktown)
Seyoung Kim (IBM Yorktown)
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“Machine Learning” vs. “Machine Intelligence”

“Brain-inspired” computing
(1940’s understanding of the brain)

“Machine Learning”
solving a specific task on labeled data by
defining & optimizing an objective function

flexible systems that continuously learn from
unlabeled data, and that perform (motor)

actions, predict consequences of those
actions, and then plan ahead to reach goals

PRO:
• can follow gradient descent thru backpropagation
 convergence to “good” solutions

• mapping to matrix manipulation  GPUs!!

• great progress in ML thanks to competitions
• Many datasets created
• Focus on quantifying performance

CON:
• we’re sure the brain doesn’t do backpropagation

• can only handle static, labelled data

• insistence on quantifying performance
may now be stifling innovation

PRO:

• we’re sure this is what the brain does

• MI should be able to handle
unlabelled & temporal data

• MI should enable continuous learning

CON:
• we don’t know (yet) how the brain guarantees

robust, stable convergence in learning

• we have to figure out how to appropriately
quantify “performance”

“Brain-inspired” computing
(modern understanding of the brain)

“Machine Intelligence”

.6

human
brain



July 15, 2016Crossbar array research @IBM IBM Research – Almaden
G. W. Burr

IRDS NanoCrossbar workshop24
Chung Lam (clam@us.ibm.com)
Sangbum Kim (sangbum.kim@us.ibm.com)

• Spike-Timing-Dependent-Plasticity (STDP) using Phase Change Memory

??? ???
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GND

Pre-synaptic
Axon STDP Gate

WLwrite

Post-synaptic Dendrite
Membrane Potential

BLread

Post-synaptic
STDP Feed

BLwrite

Pre-synaptic
Axon Spike

WLread

PCM
element

2T1R PCM design for Spike-Timing-Dependent-Plasticity

Input
spikes

Output
spikes

IEDM2015

.0.1.2
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OUTPUTS:
Predictions
Context
Stable Concepts (SDR)
Motor commands

INPUT:
Spatial-temporal data
streams of any kind

Machine Intelligence based on sequences of
Sparse Distributed Representations

A potential path to handling
temporal, unlabelled data

 Maybe a path
to machine intelligence?

Requires HUGE fanout:
many POTENTIAL synapses

(internally analog, externally binary)winfriedwilcke@us.ibm.com

“Context-Aware Learning”
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aspects we’re likely to miss (a LOT)

CPU Memory

BUS

1) Programmable
 adaptable

2) Great co$t model

Design 1 piece
of hardware…

Sell it to
LOTS of people
for vastly
different
purposes…

3) Modularity of design

… …Specifications Specifications

Requirements Requirements

Von Neumann architecture:

OK, fine: let’s research
devices to enable
energy-efficient
non-Von Neumann
architectures

.0.1.2.3
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Research needs for “NanoCrossbars” (1/2)

NVM
(long-term
digital
storage)

Access
Device

(highly
nonlinear or

transient switch)

1) NVM devices
• any flaws must be addressable by engineering
• good SNR (resistance-range / variability)

• Iprog < 50uA, Vprog < 2.0V,

tprog < 10usec, tread << 1usec

• (neuro)
• When they fail  fail to OPEN (not SHORT)
• Yield >90-95%

2) Access devices
• < 10nA half-select at (Vtotal-applied/2)  can ONLY be evaluated for NVM+AD pair!!

• extremely tight variability
(variability in nonlinear IV or holding voltage
 uncertainty in Vaccess device at Iread, Iwrite

 loss of read SNR + requires device-overwrite endurance-loss)

• When they fail  fail to OPEN (not SHORT)
–OR– ~100% yield & high endurance

.0.1
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Research needs for “NanoCrossbars” (2/2)

.0.1

NVM
(long-term
digital
storage)

Access
Device

(highly
nonlinear or

transient switch)

3) Neuromorphic applications

• Accelerating backprop:

• NVM devices with LINEAR conductance
change, from Gmin to Gmax

• Area-efficient circuit design

• Methods to protect ANN from nonlinear NVM devices

• STDP-based NN: (e.g., spikes for learning not just communication)

• Killer app that requires learning-from-timing

• Architecture/global-algorithm that harnesses STDP-like local learning rule
for robust learning to support/enable above killer-app

.2

• Machine Intelligence:
• Significant algorithm development needed too early for crossbars!

Message: Device researchers who want to have an impact here MUST
also learn/know/advance the circuits/systems/algorithms module(s)
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